Skip to main content
Log in

Amyloglucosidase-catalysed synthesis of curcumin-bis-α-d-glucoside—a response surface methodological study

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Response surface methodology (RSM) was employed to optimize amyloglucosidase-catalyzed synthesis of curcumin-bis-α-d-glucoside. A central composite rotatable design (CCRD) was employed involving five variables (enzyme concentration, curcumin concentration, incubation period, buffer concentration and pH) at five levels. A second-order polynomial equation with a R 2 value 0.9 showed good correspondence between experimental and predicted yields. Three-dimensional surface and contour plots generated described the catalytic efficiency of amyloglucosidase under the reaction conditions employed. A maximum conversion of 35% was predicted for curcumin concentrations above 0.55 mmol at 35–60% (w/w d-glucose) amyloglucosidase concentrations. While lower (<35%) amyloglucosidase concentrations converted less, concentrations >60% could be inhibitory to curcumin. Extent of glucosylation was governed by a critical buffer (0.95–1.0 ml of 0.01 M pH 6.0) to enzyme ratio (15–45% w/w d-glucose). Experiments under optimum predicted conditions of 16.9% (w/w d-glucose) amyloglucosidase, 0.33 mmol curcumin, 120 h incubation period, 0.1 mM (1.0 ml of 0.01 M) buffer concentration at pH 7.5 gave a conversion yield of 56.3%. Validation experiments carried out under selected random conditions also showed good correspondence between experimental and predicted yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Busch P, Hensen H, Kahre J, Tesmann H (1994) Agro-Food-Industry Hi-Technol 9:23–28

    Google Scholar 

  2. Hsu FL, Lee YY, Cheng JT (1994) J Nat Prod 57:308–312

    Article  CAS  Google Scholar 

  3. Carlton RR, Deans SG, Gray AI, Waterman PG (1991) Chemoecology 2:69–71

    Article  CAS  Google Scholar 

  4. Kahne DE, Walker KS (1993) PCT Int. Appl. WO 9311772A1

  5. Konstantinovic S, Predojevic J, Gojkovic S, Ratkovic Z, Mojsilovic B, Pavlovic V (2001) Indian J Chem 40B:1242–1244

    CAS  Google Scholar 

  6. Noshita T, Sugiyama T, Kitazumi Y, Oritani T (1995) Biosci Biotechnol Biochem 59:2052–2055

    Article  CAS  Google Scholar 

  7. Oku M, Sakai Y (2003) Saibo Kogaku 22:992–993 (Japanese)

    CAS  Google Scholar 

  8. Sophie L, Robert G, Pierre K (2004) Chem Commun 5:586–587

    Google Scholar 

  9. Du Y, Wei G, Linhardt RJ (2004) J Org Chem 69:2206–2209

    Article  CAS  Google Scholar 

  10. Hergenhahn M, Bertram B, Wiessler M, Sorg BL (2002) German patent application. DE 2337

  11. Aritomi M, Komori T, Kawasaki T (1986) Phytochemistry 25:231–234

    Article  CAS  Google Scholar 

  12. Mohri K, Watanable Y, Yoshida Y, Satoh M, Isobe K, Sugimoto N, Tsuda Y (2003) Chem Pharm Bull 51:1268–1272

    Article  CAS  Google Scholar 

  13. Vic G, Thomas D, Crout DHG (1997) Enzyme Microb Technol 20:597–603

    Article  CAS  Google Scholar 

  14. Lirdprapamongkol K, Svasti J (2000) Biotechnol Lett 22:1889–1894

    Article  CAS  Google Scholar 

  15. Yoon SH, Bruce Fulton D, Robyt JF (2004) Carbohydr Res 339:1517–1529

    Article  CAS  Google Scholar 

  16. Washino K (1992) Jpn. Kokkyo koho JP 04066098 A2. 1992

  17. Huang KH, Akoh CC (1996) J Food Sci 61:137–141

    Article  CAS  Google Scholar 

  18. Shieh CJ, Akok CC, Koehler PE (1995) J Am Oil Chem Soc 72:619–623

    Article  CAS  Google Scholar 

  19. Ibanoglu E, Ibanoglu S (2000) Food Chem 70:333–336

    Article  CAS  Google Scholar 

  20. Yan Y, Bornscheuer UT, Stadler G, Wahl SL, Reuss R, Schmid RD (2001) J Am Oil Chem Soc 78:147–152

    Article  CAS  Google Scholar 

  21. Ismail A, Soultani S, Ghoul M (1998) Biotechnol Prog 14:874–878

    Article  CAS  Google Scholar 

  22. Ismail A, Linder M, Ghoul M (1999) Enzyme Microbial Technol 25:208–213

    Article  CAS  Google Scholar 

  23. Chahid Z, Montet D, Pina M, Bonnot F, Graille J (1994) Biotechnol Lett 16:795–800

    Article  CAS  Google Scholar 

  24. Vijayakumar GR, Manohar B, Divakar S (2005) Eur Food Res Technol 220:272–277

    Article  CAS  Google Scholar 

  25. Gomes DCF, Alegrio LV, Leon LL, de Lima MEF (2002) Arzneim-Forsch 52:695–698

    Google Scholar 

  26. Vijayakumar GR, Divakar S (2005) Biotechnol Lett 27:1411–1415

    Article  CAS  Google Scholar 

  27. Montogomery DC (1991) Design and analysis of experiments. Wiley, New York, pp 542–547

    Google Scholar 

  28. Chahid Z, Montet D, Pina M, Graille J (1992) Biotechnol Lett 14:281–284

    Article  CAS  Google Scholar 

  29. Frandsen TP, Dupont C, Lehmbeck J, Stoffer B, Sierks MR, Honzatko RB, Svensson B (1994) Biochemistry 33:13808–13816

    Article  CAS  Google Scholar 

  30. Sierks MR, Ford C, Reilly PJ, Svensson B (1990) Protein Eng 3:193–198

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Department of Science and Technology, India is gratefully acknowledged for the financial support. GRV acknowledges Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing the Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soundar Divakar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayakumar, G.R., Manohar, B. & Divakar, S. Amyloglucosidase-catalysed synthesis of curcumin-bis-α-d-glucoside—a response surface methodological study. Eur Food Res Technol 223, 725–730 (2006). https://doi.org/10.1007/s00217-006-0259-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0259-3

Keywords

Navigation