European Food Research and Technology

, Volume 221, Issue 3–4, pp 446–451 | Cite as

Modelling of drying and rehydration of carrots using Peleg’s model

  • M. PlaninićEmail author
  • D. Velić
  • S. Tomas
  • M. Bilić
  • A. Bucić
Original Paper


The drying and rehydration process of conventionally and organically cultivated carrots was studied and the resulting data were fitted to the Peleg’s model. Carrots were fluid-bed and halogen dried and after that soaked in water at room temperature. The Peleg’s model gave a good prediction of water removal and water uptake in all experiments (R>0,994). During the drying process the Peleg’s rate constant (K 1) was affected by temperature. K 1 values decreased with the increase of the drying temperature. This relation was linear for fluid-bed drying and exponential for halogen drying, which implied a higher impact of the drying temperature on the dehydration kinetics during halogen drying. The lower K 1 values for fluid-bed drying suggested higher initial drying rates in comparison with halogen drying at all drying temperatures. The temperature dependence of 1/K 1 followed an Arrhenius-type relationship. Both Peleg’s rehydration constants (K 1 and K 2) increased with the increase of the drying temperature. This implied regular decrease of initial rehydration rate and water uptake with the increase of the drying temperature.


Peleg’s model Drying Rehydration Carrot 



This work was financially supported by the Ministry of Science, Education and Sports of the Republic of Croatia, project 0113005


  1. 1.
    Doymaz İ (2004) J Food Eng 61:359–364CrossRefGoogle Scholar
  2. 2.
    Prakash S, Jha SK, Datta N (2004) J Food Eng 62:305–313CrossRefGoogle Scholar
  3. 3.
    Marabi A, Livings SJ, Jacobson M, Saguy IS (2003) Eur Food Res Technol 217:311–318CrossRefGoogle Scholar
  4. 4.
    Velić D, Planinić M, Tomas S, Bilić M (2004) J Food Eng 64:97–102CrossRefGoogle Scholar
  5. 5.
    Sander A, Tomas S, Skansi D (1998) Dry Technol 16:1487–1499CrossRefGoogle Scholar
  6. 6.
    Skansi D, Tomas S, Pudic I, Arapovic A (1997) Dry Technol 15:1617–1631CrossRefGoogle Scholar
  7. 7.
    Tomas S, Skansi D (1996) J Chem Eng Jpn 29:367–370CrossRefGoogle Scholar
  8. 8.
    Tomas S, Skansi D (1995) Ceram Int 21:207–211CrossRefGoogle Scholar
  9. 9.
    Tomas S, Skansi D, Sokele M (1994) Ceram Int 20:9–16CrossRefGoogle Scholar
  10. 10.
    Tomas S, Skansi D, Sokele M (1994) Ind Ceram 14:47–53Google Scholar
  11. 11.
    Tomas S, Skansi D, Sokele M (1993) Dry Technol 11:1353–1369CrossRefGoogle Scholar
  12. 12.
    Maskan M (2000) J Food Eng 44:71–78CrossRefGoogle Scholar
  13. 13.
    Doymaz İ (2004) J Food Eng 61:341–346CrossRefGoogle Scholar
  14. 14.
    Demir V, Gunhan T, Yagcioglu AK, Degirmencioglu A (2004) Biosyst Eng 88:325–335CrossRefGoogle Scholar
  15. 15.
    Rastogi NK, Angersbach A, Niranjan K, Knorr D (2000) J Food Sci 65:838–841CrossRefGoogle Scholar
  16. 16.
    Maskan M (2001) J Food Eng 48:177–182CrossRefGoogle Scholar
  17. 17.
    Rastogi NK, Raghavarao KSMS, Niranjan K, (1997) J Food Eng 31:423–432CrossRefGoogle Scholar
  18. 18.
    Sanjuán N, Simal S, Bon J, Mulet A (1999) J Food Eng 42:27–31CrossRefGoogle Scholar
  19. 19.
    Sanjuán N, Cárcel JA, Clemente G, Mulet A (2001) Eur Food Res Technol 212:449–453CrossRefGoogle Scholar
  20. 20.
    Krokida MK, Marinos-Kouris D (2003) J Food Eng 57:1–7CrossRefGoogle Scholar
  21. 21.
    Peleg M (1988) J Food Sci 53:1216–1219CrossRefGoogle Scholar
  22. 22.
    Abu-Ghannam N, McKenna B (1997) J Food Eng 32:391–401CrossRefGoogle Scholar
  23. 23.
    Turhan M, Sayar S, Gunasekaran (2002) J Food Eng 53:153–159CrossRefGoogle Scholar
  24. 24.
    Sopade PA, Obepka JA (1990) J Food Sci 55:1084–1087CrossRefGoogle Scholar
  25. 25.
    Hung TV, Liu LH, Black RG, Trewhella MA (1993) J Food Sci 58:848–852CrossRefGoogle Scholar
  26. 26.
    Maskan M (2002) J Food Eng 52:337–341CrossRefGoogle Scholar
  27. 27.
    Moreira Azoubel P, Xidieh Murr FE (2004) J Food Eng 61:291–295CrossRefGoogle Scholar
  28. 28.
    Park JK, Bin A, Reis Brod FP, Brandini Park THK (2002) J Food Eng 52:293–298CrossRefGoogle Scholar
  29. 29.
    Palou E, López-Malo A, Argaiz A, Welti J (1994) Dry Technol 12:965–978CrossRefGoogle Scholar
  30. 30.
    Sacchetti G, Gianotti A, Dalla Rosa M (2001) J Food Eng 49:163–173CrossRefGoogle Scholar
  31. 31.
    Ruíz Díaz G, Martínez-Monzó J, Fito P, Chiralz A (2003) Innov Food Sci Emerg Technol 4:203–209CrossRefGoogle Scholar
  32. 32.
    Bobić Z, Bauman I, Ćurić D (2002) Sadhana—Acad P Eng S 27:365–374Google Scholar
  33. 33.
    Hatamipour MS, Mowla D (2002) J Food Eng 55:247–252CrossRefGoogle Scholar
  34. 34.
    Baysal T, Icier F, Ersus S, Yildiz H (2003) Eur Food Res Technol 218:68–76CrossRefGoogle Scholar
  35. 35.
    Sayar S, Terhan M, Gunasekaran S (2001) J Food Eng 50:91–98CrossRefGoogle Scholar
  36. 36.
    Marabi A, Jacobson M, Livings SJ, Saguy IS (2004) Eur Food Res Technol 218:339–344CrossRefGoogle Scholar
  37. 37.
    Lewicki PP (1998) Int J Food Prop 1:1–22CrossRefGoogle Scholar
  38. 38.
    Kaymak-Ertekin F (2002) J Food Sci 67:168–175CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. Planinić
    • 1
    Email author
  • D. Velić
    • 1
  • S. Tomas
    • 1
  • M. Bilić
    • 1
  • A. Bucić
    • 1
  1. 1.Department of Process Engineering, Faculty of Food TechnologyUniversity of J. J. Strossmayer in OsijekOsijekCroatia

Personalised recommendations