Skip to main content
Log in

In vitro antioxidant analysis of supercritical fluid extracts from rosemary (Rosmarinus officinalis L.)

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Different supercritical fluid extraction conditions were tested on rosemary leaves using a pilot-plant-scale extractor. Each of them provided two separated fractions which were characterized chemically by liquid chromatography–diode-array detection–mass spectrometry using electrospray in the positive mode. Twelve compounds were identified, including phenolic diterpenes and flavonoids. Owing to the lack of available standards, only carnosic acid could be quantified. The antioxidant activity of the extracts was determined by the 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) test and the β-carotene bleaching test was used to study the differences in behavior of antioxidants in an emulsified medium for some of the extracts obtained. The results of the correlation studies to examine the relationship between the antioxidant activity (EC50), obtained by using the DPPH test, and the concentration of all the compounds detected in the extracts showed that carnosic acid was the more correlated compound, with a coefficient of correlation of −0.87. Using forward stepwise multiple linear regression, carnosic acid, methyl carnosate and carnosol were the compounds selected to predict the mentioned activity, with a value of 0.95 for the coefficient of determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chipault JR, Mizumo GR, Hawkins JM, Lundberg WO (1952) Food Res 17:46

    Article  CAS  Google Scholar 

  2. Halliwell B (1999) Food Sci Agric Chem 67–109

  3. Halliwell B, Aesbach R, Löliger J, Aruoma OI (1995) Food Chem Toxicol 33:601–607

    Article  CAS  PubMed  Google Scholar 

  4. Madhavi DL, Despande SS, Salunkhe DK (1996) Food antioxidants, Marcel Dekker, New York

    Google Scholar 

  5. Inatani R, Nakatani N, Fuwa H (1983) Agric Biol Chem 47:521–528

    CAS  Google Scholar 

  6. Schwarz K, Ternes W (1992) Z. Lebensm Unters Forsch 195:99–103

    Article  CAS  PubMed  Google Scholar 

  7. Schwarz K, Ternes W, Schmauderer E (1992) Z Lebensm Unters Forsch. 195:104–107

    Article  CAS  PubMed  Google Scholar 

  8. Cuvelier ME, Berset C, Richard H (1994) J Agric Food Chem 42:665–669

    Article  CAS  Google Scholar 

  9. Aruoma OI, Halliwell B, Aeschbach R, Loligers J (1992) Xenobiotica 22:257–268

    Article  CAS  PubMed  Google Scholar 

  10. Frankel EN, Huang S-W, Aeschbach R, Prior E (1996) J Agric Food Chem 44:131–135

    Article  CAS  Google Scholar 

  11. Frankel EN, Huang S-W, Prior E, Aeschbach R (1996) J Sci Food Agric 72:201–208

    Article  CAS  Google Scholar 

  12. Tena MT, Valcárcel M, Hidalgo P, Ubera JL (1997) Anal Chem 69:521–526

    Article  CAS  PubMed  Google Scholar 

  13. Reverchon E, Donsi G, Pota F (1992) Ital J Food Sci 3:187–194

    Google Scholar 

  14. Ibañez E, Oca A, Murga G de Lopez-Sebastian S, Tabera J, Reglero G (1999) J Agric Food Chem 47:1400–1404

    Article  PubMed  Google Scholar 

  15. Cuvelier ME, Richard H, Berset C (1996) J Am Oil Chem Soc 73:645–652

    Article  CAS  Google Scholar 

  16. Señoráns FJ, Ibañez E, Cavero S, Tabera J, Reglero G (2000) J Chromatogr A 870:491–499

    Article  PubMed  Google Scholar 

  17. Brand-Williams W, Cuvelier ME, Berset C (1995) Lebens. Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  18. Velioglu YS, Mazza G, Gao L, Oomah BD (1998) J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  19. Tsuda T, Mizuno K, Ohshima K, Kawakishi S, Osawa S (1995) J Agric Food Chem 43:2803–2806

    Article  CAS  Google Scholar 

  20. Richheimer SL, Bernart MW, King GA, Kent MC, Bailey DT (1996) J Am Oil Chem Soc 73:507–514

    Article  CAS  Google Scholar 

  21. Luis JG, Quiñones W, Grillo TA, Kishi MP (1994) Phytochem. 35:1373–1374

    Article  CAS  Google Scholar 

  22. Munné-Bosch S, Alegre L (2001) Plant Phys 125:1094–1102

    Article  Google Scholar 

  23. Masuda T, Inaba Y, Maekawa T, Takeda Y, Tamura H, Yamaguchi H (2002) J Agric Food Chem 50:5863–5869

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by AL Air Liquide (Madrid, Spain) and by CICYT projects (AGL2004-06893-C02-01 and AGL2000-0448). The authors thank Chubby Vicente for her kind help in the acquisition of the MS spectra. S.C. thanks the Ministerio de Ciencia y Tecnología for a grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Ibañez.

Additional information

Área de Tecnología de Alimentos, Facultad de Ciencias, Universidad Autónoma de Madrid is an associated unit of IFI-CSIC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavero, S., Jaime, L., Martín-Álvarez, P.J. et al. In vitro antioxidant analysis of supercritical fluid extracts from rosemary (Rosmarinus officinalis L.). Eur Food Res Technol 221, 478–486 (2005). https://doi.org/10.1007/s00217-005-1139-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-1139-y

Keywords

Navigation