Skip to main content

Freezing, thawing and cooking effects on quality profile assessment of green beans (cv. Win)


Results are presented of the effect of freezing followed by thawing (air and water immersion, both at environmental temperature) and cooking (traditional boiling in a covered pot) on quality profile (in terms of objective texture, colour, chlorophylls and pheophytins and sensory attributes) and structure of green beans (cv. Win). Freezing was carried out at three different rates by forced convection with liquid nitrogen vapour. Kramer shear cell (KSC) and Warner–Bratzler (WB) tests were used for objective assessment of the texture. The highest parameter values occurred in beans frozen at the highest rate and air-thawed at the slowest rate. Also, minimum alteration of the rheological behaviour of cooked beans was achieved by freezing at the highest rate. The best parameter for assessing the texture of frozen green beans after thawing and cooking was the Warner–Bratzler slope (S WB). Coefficients of softening estimated for S WB in the thawed beans showed that the texture of the beans frozen at −24 °C was almost four and almost five times softer than that of the beans frozen at −70 °C, for air and water thawing respectively. Frozen and thawed green beans were darker than fresh control, whereas freezing prior to cooking produced lighter-coloured beans than direct cooking. The freezing rate affected colour parameters differently depending on the process that followed. When beans were thawed, increasing the freezing rate produced lighter-coloured beans, whereas when beans were cooked, increasing the rate produced darker-coloured beans. No difference was found in sensory assessments between cooked samples frozen at −24 °C, −35 °C and −70 °C, which probably reflects the panellists' mixed preferences for quickly and slowly frozen samples. Scanning electron microscopy (SEM) revealed different degrees of mechanical damage to tissue structure, which accounted for the rheological behaviour of the beans.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. Martins RC, Silva CLM (2004) J Food Eng 64:481–488 (DOI: 10.1016/j.foodeng.2003.11.015)

    Article  Google Scholar 

  2. Euromonitor (2000) Market Res Eur 32:69–110

    Google Scholar 

  3. Canet W, Alvarez MD, Luna P, Fernández C (2004) Eur Food Res Technol 219:240–250. (DOI: 10.1007/s00217-004-0953-y)

    Article  CAS  Google Scholar 

  4. Gutschmidt J (1968) In: Hawthorn J, Rolfe EJ (eds) Low temperature biology of foodstuffs. Pergamon, London, p 299

  5. Brown MS (1967) J Sci Food Agric 18:77–81

    Article  Google Scholar 

  6. Canet W (1989) In: Thorne S (ed) Developments in food preservation, Chap 5. Elsevier, London, pp 1–50

  7. Brown MS (1973) Proceedings of 13th International Congress of Refrigeration, Vol 3. Paris, France, pp 491–497

  8. Chourot JM, Lauwers J, Massoji N, Lucas T (2001) Int J Food Sci Technol 36:179–187

    Article  CAS  Google Scholar 

  9. Chen BH, Peng HY, Chen HE (1995) J Agric Food Chem 43:1912–1918

    Article  CAS  Google Scholar 

  10. Oruña MJ, González MJ, López J, Simal J (1997) Z Lebensm Unters Forsch A 205:148–152

    Article  Google Scholar 

  11. Belitz HD, Grosch W (1988) Lehrbuch der Lebensmittelchemie, Chap. 17. Acribia, Zaragoza, p 813

  12. Alvarez MD, Morillo MJ, Canet W (1999) J Sci Food Agric 79:1237–1248

    Article  CAS  Google Scholar 

  13. Alvarez MD, Canet W (1999) Eur Food Res Technol 210:102–108

    Article  CAS  Google Scholar 

  14. Canet W, Alvarez MD (2000) Aplicación del frío a los alimentos, Chap 7. Mundi-Prensa, Madrid, pp 201–258

  15. Canet W, Alvarez MD, Luna P, Fernández C, Tortosa ME (2005) Eur Food Res Technol 220:421–430. (DOI: 10.1007/s00217-004-1051-x)

    Article  CAS  Google Scholar 

  16. De la Cruz C, González MJ, Oruña MJ, López J, Simal JA, Simal J (1997) Food Res Int 30:787–791

    Article  Google Scholar 

  17. Martins RC, Silva CLM (2004) J Food Eng 64:455–464 (DOI: 10.1016/j.foodeng.2003.11.012)

    Article  Google Scholar 

  18. IPQ-NP-2447 (1993) Feijão Verde Ultracongelado: Definição, Características, Classificação, Acondicionamento e Marcação. Direcção Geral da Qualidade, Lisbon

  19. International Institute of Refrigeration (1986). Recommendations for the processing and handling of frozen foods, 3rd edn. International Institute of Refrigeration, Paris, France

  20. FAO-WHO (1972) Standard Procedure for Cooking of Quick Frozen Vegetables (CAC/RN 33–1970). Recommended International Standard Procedures for Thawing of Quick-Frozen Fruits and Vegetables and Cooking of Quick-Frozen Vegetables for Examination Purposes, FAO-WHO Food Standards Programme, FAO, Rome, pp 8–9

  21. Ferreira A, Abano R, Mota T, Canet W (1995) In: Gallegos C, Guerrero A, Muñoz (eds) Evaluación objectiva de la textura de judía verde (cv. Win). Efecto del escaldado y las velocidades de congelación y descongelación. Real Sociedad Española de Quimica, Sevilla, pp 27–37

  22. Canet W (1988) J Microwave Power 23:231–235

    Google Scholar 

  23. Canet W, Tortosa ME (1990). Estudio de las modificaciones estructurales y de textura debidas a la congelación de guisante. Actas de Horticultura. Sociedad Española de Ciencias Hortícolas, Córdoba, pp 480–485

  24. Alvarez MD, Canet W, Tortosa ME (1997) Z Lebensm Unters Forsch A 204:356–364

    Article  CAS  Google Scholar 

  25. Little AC (1975) J Food Sci 40:410–411

    Article  Google Scholar 

  26. Clydesdale FM (1991) J Food Quality 14:61

    Article  Google Scholar 

  27. Mcguire RG (1992) HortSci 27:1254–1255

    Google Scholar 

  28. Vernon LP (1960) Anal Chem 32:1144–1150

    Article  CAS  Google Scholar 

  29. Adams MJ, Bedford LV, Geering J (1981) QAV—a method for the sensory appraisal of quality processed vegetable varieties. Technical memorandum, 278. The Campden Food Preservation Research Association, Chipping Campden

  30. Fuchigami M, Hyakumoto N, Miyazaki K, Nomura T, Sakaki J (1994) J Food Sci 59:1162–1167

    Article  CAS  Google Scholar 

  31. Fuchigami M, Hyakumoto N, Miyazaki K (1995) J Food Sci 60:132–136

    Article  CAS  Google Scholar 

  32. Fuchigami M, Hyakumoto N, Miyazaki K, Nomura T, Sakaki J (1995) J Food Sci 60:1260–1264

    Article  CAS  Google Scholar 

  33. Alonso J, Canet W (1994) J Sci Food Agric 66:1–7

    Article  Google Scholar 

  34. Alvarez MD, Canet W (1995) In: Gallegos C, Guerrero A, Muñoz (eds) Efecto de las velocidades de congelación, descongelación y congelaciones y descongelaciones sucesivas en distintos parámetros reológicos definitorios de la textura de patata (cv. Monalisa). Real Sociedad Española de Quimica, Sevilla, pp 3–14

  35. Stolle-Smits T, Donkers J, van Dijk C, Derksen J, Sassen MMA (1998) Lebensm Wiss u Technol 31:237–244

    Article  CAS  Google Scholar 

  36. Brown MS (1976) Food Technol 30:106–109, 114

    Google Scholar 

  37. Alvarez MD, Canet W (1998) Z Lebensm Unters Forsch A 207:55–65

    Article  CAS  Google Scholar 

Download references


The authors thank the Instituto Nacional de Investigação Agrária (INIA Proj Piddac 117/97), the Consejo Superior Investigaciones Científicas (CICyT, Project ALI98-1055) (Spain) and Junta Nacional de Investigacão Científica y Tecnológica de Portugal (Proc n° 423/CSIC), which financially supported this cooperative research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to María Dolores Alvarez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferreira, A., Canet, W., Alvarez, M.D. et al. Freezing, thawing and cooking effects on quality profile assessment of green beans (cv. Win). Eur Food Res Technol 223, 433–445 (2006).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Phaseolus vulgaris L.
  • Freezing and thawing rates
  • Cooking
  • Mechanical tests
  • Quality profile
  • Sensory analysis
  • Structure