Methyl jasmonate in conjunction with ethanol treatment increases antioxidant capacity, volatile compounds and postharvest life of strawberry fruit

  • J. Fernando Ayala-Zavala
  • Shiow Y. Wang
  • Chien Y. Wang
  • Gustavo A. González-Aguilar
Original Paper

Abstract

The antioxidant capacity, total anthocyanins, total phenolics, volatile compounds, and postharvest quality of strawberry fruit were evaluated after treatment with natural antimicrobial compounds and during storage at 7.5 °C. Strawberries treated with methyl jasmonate (MJ) in conjunction with ethanol (MJ-ETOH) showed higher antioxidant capacity, total phenolics, and anthocyanins than those treated with ethanol or control (non-treated). MJ-ETOH and ethanol treatments also increased volatile compounds during storage period. However, individual volatile compounds were affected differently. Methyl acetate, isoamyl acetate, ethyl hexanoate, butyl acetate, and hexyl acetate increased, while ethyl butanoate, 3-hexenyl acetate, and methyl hexanoate decreased during storage. The postharvest life was longer for those berries treated with MJ-ETOH and MJ than for those treated with ethanol or control fruit. In conclusion, strawberries treated with MJ-ETOH maintained an acceptable overall quality for the longest storage duration and retained higher levels of volatile compounds; also, berries treated with MJ showed the highest antioxidant capacity compared with other treatments during the postharvest period.

Keywords

Antioxidant Volatile compounds Methyl jasmonate Ethanol Strawberry 

Abbreviations used

AAPH 2′,2′-azobis (2-amidinopropane) dihydrocloride ORAC oxygen radical absorbance capacity R-PE (R)-phycoerithrin Trolox 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxilic acid TE Trolox equivalents 

References

  1. 1.
    Wang H, Cao G, Prior RL (1996) J Agric Food Chem 44:701–705CrossRefGoogle Scholar
  2. 2.
    Heinonen IM. Meyer AS, Frankel EN (1998) J Agric Food Chem 46:4107–4112CrossRefGoogle Scholar
  3. 3.
    Wang SY, Lin HS (2000) J Agric Food Chem 140–146Google Scholar
  4. 4.
    Rice-Evans CA, Miller NJ (1996) Biochem Soc Trans 24:790–795PubMedGoogle Scholar
  5. 5.
    Wang SY, Jiao H (2000) J Agric Food Chem 48:5677–5684CrossRefPubMedGoogle Scholar
  6. 6.
    Pelayo C, Ebeler SE, Kader AA (2003) Postharvest Biol Technol 27:171–183CrossRefGoogle Scholar
  7. 7.
    Ayala-Zavala JF, Wang SY, Wang CY, Gonzalez-Aguilar GA (2004) Lebensmittel-Wissenchaft Technol 37:687–695CrossRefGoogle Scholar
  8. 8.
    Buta IT, Moline HE (1998) J Agric Food Chem 46:1253–1256CrossRefGoogle Scholar
  9. 9.
    Moline HE, Buta JG, Saftner RA, Maas JL (1997) Adv Strawberry Res 16:13–17Google Scholar
  10. 10.
    Droby S, Porat R, Cohen L, Weiss B, Shapiro B, (1999) Philosoph-Hadas, & Meir, S. Suppressing green mold decay in grapefruit with postharvest jasmonate application. J Am Soc Hort Sci 124:184–188Google Scholar
  11. 11.
    Meir S, Droby S, Davidson H, Alsevia S, Cohen L, Horev B, Philosoph-Hadas S (1998) Postharvest Biol Technol 13:235–243CrossRefGoogle Scholar
  12. 12.
    Tao R, Zhou T (2000) HortScience 35:1304–1307Google Scholar
  13. 13.
    Lichter A, Zutkhy Y, Sonego L (2002) Postharvest Biol Technol 24:301–308CrossRefGoogle Scholar
  14. 14.
    Crick SG, McConchie R (1999) Postharvest Biol Technol 17:227–231CrossRefGoogle Scholar
  15. 15.
    Berger RG, Drawert F (1984) J Sci Food Agric 35:1318–1325CrossRefGoogle Scholar
  16. 16.
    Kato K (1990) HortScience 25:205–207Google Scholar
  17. 17.
    Esguerra EB, Kawada K, Kitagawa H, Suhadrabandhu S (1993) Acta Horticult 321:811–820Google Scholar
  18. 18.
    Saltveit ME, Sharaf AR (1992) J Am Soc Horticult Sci 117:793–798Google Scholar
  19. 19.
    Yuen CM, Paton JE, Hanawati R, Shen LQ (1995) J Horticult Sci 70:81–84Google Scholar
  20. 20.
    Margosan DA, Smilanick JL, Simmons GF, Delmer JH (1997) Plant Dis 81:1405–1409.CrossRefGoogle Scholar
  21. 21.
    Scott KJ, Yuen CMC, Ghahramani F (1995) Postharvest Biol Technol 6:201–208CrossRefGoogle Scholar
  22. 22.
    Wang SY, Zheng W, Galletta GJ (2002) J Agric Food Chem 50:6534–6542CrossRefPubMedGoogle Scholar
  23. 23.
    Holcroft DM, Kader AA (1999) HortScience 34:1244–1248Google Scholar
  24. 24.
    Häkkinnen SH, Kärenlampi SO, Mykkänen HM, Törrönen AR (2000) J Agric Food Chem 48:2960–2965CrossRefPubMedGoogle Scholar
  25. 25.
    De-Ancos B, Gonzalez EM, Cano P (2000) J Agric Food Chem 48:4565–4570CrossRefPubMedGoogle Scholar
  26. 26.
    Slinkard K, Singleton VL (1997) Am J Enol Viticult 28:49–55Google Scholar
  27. 27.
    Cheng GW, Breen PJ (1991) J Am Soc Horticult Sci 116:865–869Google Scholar
  28. 28.
    Cao G, Sofic E, Prior RL (1996) J Agric Food Chem 44:3426–3441CrossRefGoogle Scholar
  29. 29.
    Pérez AG, Sanz C (2001) J Agric Food Chem 49:2370–2375CrossRefPubMedGoogle Scholar
  30. 30.
    NCSS (2000) Statistical system for windows. Kaysville, UTGoogle Scholar
  31. 31.
    Ding CK, Wang CY, Gross KC, Smith DL (2001) Plant Sci 161:1153–1159CrossRefGoogle Scholar
  32. 32.
    Ding CK, Wang CY, Gross KC, Smith DL (2002) Planta 214:895–901CrossRefPubMedGoogle Scholar
  33. 33.
    Dentener PR, Lewthwaite SE, Maindonald JH, Connolly PG (1998) J Econ Entomol 91:767–772Google Scholar
  34. 34.
    Dentener PR, Lewthwaite SE, Bennett KV, Maindonald JH, Connolly PG (2000) J Econ Entomol 93:519–525PubMedCrossRefGoogle Scholar
  35. 35.
    Deng W, Hamilton-Kemp TR, Nielsen MT, Andersen RA, Collins GB, Hildebrand DF (1993) J Agric Food Chem 41:506–510CrossRefGoogle Scholar
  36. 36.
    Kader AA (1990) A. Dale and J. J. Luby (eds) Quality and its maintenance to the postharvest physiology of strawberry. In: The Strawberry Into the 21st Century, Proceedings of the Third North American Strawberry Conference, Houston, TX, Timber Press: Portland, OR, pp 145–152Google Scholar
  37. 37.
    Galletta GJ, Maas JL, Enns JM, Draper AD Swartz HJ (1995) HortScience 30:631–634Google Scholar
  38. 38.
    Wang SY, Camp MJ (2000) Sci Horticult 85:183–199CrossRefGoogle Scholar
  39. 39.
    Fan X, Mattheis JP, Fellman JK (1998) Planta 204:444–449CrossRefGoogle Scholar
  40. 40.
    Gonzalez-Aguilar GA, Wang CY, Buta JG (2001) J Sci Food Agric 81:1244–1249CrossRefGoogle Scholar
  41. 41.
    Timberlake CF, Bridle P (1982) Distribution of anthocyanins in food plant. In: Anthocyanins as food colors, Academic Press, New York, 137 p.Google Scholar
  42. 42.
    Pérez AG, Sanz C, Rios JJ, Olias JM (1993) Revista Española de Ciencia y Tecnología de Alimentos 33:665–677Google Scholar
  43. 43.
    Latrasse A (1991) Fruit III. In: H. Maarse (ed.) Volatile compounds in foods and beverages, Marcel Dekker, New York, pp 329–387Google Scholar
  44. 44.
    Zabetakis I, Holden MA (1997) J Sci Food Agric 74:421–434CrossRefGoogle Scholar
  45. 45.
    Sanz C, Olias JM, Pérez AG (1997) Aroma biochemistry of fruits and vegetables. In: F. Tomas-Barberan and R. J. Robins (eds) Phytochemistry of fruits and vegetables, Oxford University Press, Oxford, pp 125–155Google Scholar
  46. 46.
    Forney CF, Kalt W, McDonald, Jane E, Jordan MA (1998) Acta Horticult 464:506–506Google Scholar
  47. 47.
    Forney CF, Kalt W, Jordan MA (2000) HortScience 35:1022–1026Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • J. Fernando Ayala-Zavala
    • 1
    • 3
  • Shiow Y. Wang
    • 2
  • Chien Y. Wang
    • 1
  • Gustavo A. González-Aguilar
    • 3
  1. 1.Produce Quality and Safety LaboratoryBeltsvilleUSA
  2. 2.Fruit Laboratory, Plant Sciences Institute, Agricultural Research ServiceU.S. Department of AgricultureBeltsvilleUSA
  3. 3.Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, AC)La Victoria. HermosilloMéxico

Personalised recommendations