Skip to main content
Log in

Effect of natural compounds alternative to commercial antimelanosics on polyphenol oxidase activity and microbial growth in cultured prawns (Marsupenaeus tiger) during chilled storage

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This work deals with the inhibition of melanosis and microflora of tiger prawns (Marsupenaeus japonicus) from aquaculture, by the use of natural compounds selected on the basis of their antioxidant and/or antimicrobial properties: (i) a commercial formula based on an ester from lauric acid and arginine, (ii) d-gluconic acid, (iii) glucose, (iv) chitosan. Their effect was compared with a commercial formulation based on sulphites. Results showed that sulphites alone inhibited efficiently the PPO activity preventing the melanosis development. d-gluconic acid inhibited partially the enzyme activity, but it did not prevent the development of blackspots. All of selected compounds inhibited the microbial growth (total bacteria count, Pseudomonas spp. and Enterobacteriaceae). The H2S-producing microorganisms seemed to be especially sensitive to these natural compounds, with inhibitions higher than 2 log cycle as caused by gluconic acid. However, the luminescent colonies were practically not affected during storage, while the commercial sulphites inhibited this type of marine bacteria. The acidic nature of some compounds could have favoured the growth of lactic acid bacteria. This fact is important because of the potential biopreservative role of lactic acid bacteria when these types of organisms dominate the microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Food and Agriculture Organization of the United Nations, FAO (2004) Part I. Editorial Production and Design Group Publishing Management Service ISBN 92–5–105177–1

  2. Ministerio de Agricultura, Pesca y Alimentación, MAPA (2005) Jacumar, Estadísticas de Acuicultura por Especies, Acuicultura Marina www.mapa.es

  3. Iyengar R, McEvily AJ (1992) Trends Food Sci Technol 3:60–64

    Article  CAS  Google Scholar 

  4. McEvily A, Radha I, Otwell S (1991) Food Technol 9:80–86

    Google Scholar 

  5. Taylor SL, Bush RK (1986) Food Technol 40:47–52

    Google Scholar 

  6. Montero P, López-Caballero ME, Pérez-Mateos M (2001) J Food Sci 66(8):1201–1206

    CAS  Google Scholar 

  7. Montero P, Martínez-Alvarez O, Gómez-Guillén MC (2004) J Food Sci 68(8):643–647

    Article  Google Scholar 

  8. Martínez-Alvarez O, Gómez-Guillén MC, Montero P (2005) J Food Prot 68(1):103–110

    Google Scholar 

  9. Otwell WS, Iyengar R, McEvily AJ (1992) J Aqua Food Prod Technol 1(1):53–65

    Article  CAS  Google Scholar 

  10. Commission of the European Communities (2004) Proposal for a Directive of the European Parliament and of the Council amending Directive 95/2EC on food additives other than colours and sweeteners and Directive 94/35/EC on sweeteners for use in foodstuffs. Brussels, 11.10.2004, COM (2004) 650 final, 2004/0237 (COD)

  11. Antonacopoulos N, Vyncke W (1989) Zeit Lebens U Forsch 189:309–316

    Article  CAS  Google Scholar 

  12. Wang ZKD, Taylor A, Yan X (1994) Food Chem 51:99–103

    Article  CAS  Google Scholar 

  13. Rzepecki LM, Waite JH (1989) Anal Biochem 179:375–381

    Article  CAS  Google Scholar 

  14. López-Caballero ME, Pérez-Mateos M, Borderías JA, Montero P (2000) J Food Prot 63(10):1381–1388

    Google Scholar 

  15. López-Caballero ME, Goncalves A, Nunes ML (2003) Eur Food Res Technol 214(3):192–197

    Article  CAS  Google Scholar 

  16. Cintra IHA, Ogawa NBP, Souza MR, Diniz FM, Ogawa M (1999) Ciencia e Tecnologia de Alimentos 19(3):314–317

    CAS  Google Scholar 

  17. Simpson BK, Gagné N, Ashie INA, Noroozi E (1997) Food Biotechnol 11(1):25–44

    Article  CAS  Google Scholar 

  18. Gram L, Huss HH (1996) Int J Food Microbiol 33:121–137

    Article  CAS  Google Scholar 

  19. Dalgaard P (1995) Int J Food Microbiol 26:319–333

    Article  CAS  Google Scholar 

  20. Dalgaard P, Mejholm O, Christiansen TJ, Huss HH (1997) L Appl Microbiol 24:373–378

    Article  Google Scholar 

  21. Chinivasagam HN, Bremner HA, Reeves R (1998) L, Appl Microbiol 27:5–8

    Article  Google Scholar 

  22. Chinivasagam HN, Bremner HA, Thrower SJ, Nottingham SM (1996) J Aquat Food Prod Technol 5:25–50

    Article  Google Scholar 

  23. Whachun Y, Rand AG (1995) Food Biotechnol 4(4):253–257

    Google Scholar 

  24. Kantt CA, Torres JA (1993) J Food Prot 56(2):147–152

    CAS  Google Scholar 

  25. Lamanna C, Mallette MF, Zimmerman LN (1973) In: Basic bacteriology, 4th edn. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  26. Field CE, Pivarnik LF, Barnett SM, Rand AG (1986) J Food Sci 51(1):66–70

    Article  CAS  Google Scholar 

  27. Wiseman A (1975) Industrial practice with enzymes. In: Handbook of enzyme biotechnology. Halsted Press, Wiley, New York, p 243

    Google Scholar 

  28. Shaw SJ, Bligh EG, Woyewoda AD (1986) Can Inst Food Sci Technol 19(1):3–6

    CAS  Google Scholar 

  29. Shelef LA (1977) J Food Sci 42(5):1172–1175

    Article  CAS  Google Scholar 

  30. Barua M, Shelef LA (1980) J Food Sci 45:349–351

    Article  CAS  Google Scholar 

  31. Seguer-Bonaventura J, Rocabayera-Bonvila X, Martínez-Rubio MA (2003) Patent Number WO2003094638-A1, Assignee: Lamirsa (Laboratorios Miret, SA)

  32. Rodriguez E (2004) J Appl Microbiol 96(5):903–912

    Article  CAS  Google Scholar 

  33. López-Caballero ME, Gómez-Guillén MC, Pérez-Mateos M, Montero P (2005) Food Hydrocol 19:303–311

    Article  CAS  Google Scholar 

  34. Ouattara B, Simard RE, Piette G. Bégin A, Holley RA (2000) Int J Food Microbiol 62:139–148

    Article  CAS  Google Scholar 

  35. Guan-li Y, Yuang-hong W, Shu-qing L, Xue-lin T (1996) Chin J Oceanol Limnol 14(2):189–192

    Article  Google Scholar 

  36. Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Int J Food Microbiol 71:235–244

    Article  CAS  Google Scholar 

  37. Coma V, Deschamps A, Martial-Gros A (2003) J Food Sci 68(9):2788–2792

    Article  CAS  Google Scholar 

  38. Lee HW, Park YS, Jung JS, Shin WS (2002) Anaerobe 8(6):319–324

    Article  CAS  Google Scholar 

  39. Yalpani M, Pantaleone D (1994) Carbohydr Res 265:159–175

    Article  Google Scholar 

  40. Jeon YI, Kamil JYVA, Shahidi F (2002) J Agric Food Chem 20:5167–5178

    Article  CAS  Google Scholar 

  41. Sung HH, Yang YL, Song YL (1996) J Biol Crus 16:279–285

    Google Scholar 

  42. Summers NM (1967) Comp Biochem Physiol 23:129–138

    Article  CAS  Google Scholar 

  43. Ferrer OJ, Koburger JA, Otwell WS, Gleeson RA, Simpson BK, Marshall MR (1989) J Food Sci 54(1):63–67, 176

    Article  CAS  Google Scholar 

  44. Gómez-Jiménez S, Uglow RF, Gollas-Galvan T (2000) Fish Shellfish Immun 10:631–635

    Article  Google Scholar 

  45. Bartolo I, Birk EO (1998) Int J Food Sci Technol 33:329–336

    Article  CAS  Google Scholar 

  46. Söderhäll K, Cerenius L (1992) Annu Rev Fish Dis 3–23

  47. Hernández-López J, Gollas-Galvan T, Gómez-Jiménez S, Portillo-Clarck G, Vargas-Albores F (2003) Fish Shellfish Immunol 14:105–114

    Article  CAS  Google Scholar 

  48. Zotos A, Taylor KDA (1997) Food Chem 60(4):469–478

    Article  CAS  Google Scholar 

  49. Savagaon KA, Sreenivasan A (1978) Fish Technol 15:49–55

    CAS  Google Scholar 

  50. Ricquebourg SL, Robert-Da Silva CMF, Rouch CC, Cadet FR (1996) J Agric Food Chem 44:3457–3460

    Article  CAS  Google Scholar 

  51. Gyurcsik B, Nagy L (2000) C Chem Rev 6:81--149

    Google Scholar 

  52. No HK, Meyers SP (1989) J Food Sci 54:60–62, 70

    Article  CAS  Google Scholar 

  53. Pitotti A, Nicoli MC Sensidoni A, Lerici CR (1990) In: Spiess WEL, Schubert H (eds), Engineering and Food: Proceeding of 5th international congress on engineering and food, vol 1. Elsevier, New York, pp 671–681.

  54. Ramírez EC, Whitaker JR, Virador V (2003) In Whitaker JR, Voragen AGJ, Wong DWS (eds), Handbook of food enzymology, Marcel Dekker, New York, pp 509–523

Download references

Acknowledgements

The authors wish to thank the Consejería de Agricultura y Pesca de la Junta de Andalucía (Project CSIC-2000-664) and the European Union (Project CRUSTAMEL, FAIR-Life-CRAFT/001/1312) for co-financing the research. Author López-Caballero is under contract Ramón y Cajal, MEC-CSIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Elvira López-Caballero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Caballero, M.E., Martínez-Álvarez, Ó., Gómez-Guillén, M.C. et al. Effect of natural compounds alternative to commercial antimelanosics on polyphenol oxidase activity and microbial growth in cultured prawns (Marsupenaeus tiger) during chilled storage. Eur Food Res Technol 223, 7–15 (2006). https://doi.org/10.1007/s00217-005-0049-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-0049-3

Keywords

Navigation