European Food Research and Technology

, Volume 220, Issue 5–6, pp 575–578 | Cite as

Determination of anthocyanins in four Croatian cultivars of sour cherries (Prunus cerasus)

  • Valentina ŠimunićEmail author
  • Spomenka Kovač
  • Dajana Gašo-Sokač
  • Werner Pfannhauser
  • Michael Murkovic
Original Paper


The anthocyanins were characterised and quantified in four cultivars of sour cherries by means of high-performance liquid chromatography and mass spectrometry. Column chromatography on XAD-2 Amberlite was the method used for isolation of anthocyanins. A diode-array detector was employed. For anthocyanins determination was chosen wavelength of 518 nm. Cyanidin-3-glucosylrutinoside and cyanidin-3-rutinoside were major anthocyanins. The total anthocyanin content in sour cherries, (expressed as cyanidin-3-glucosylrutinoside) varied from 2.7 to 28.0 mg/100 g of fresh weight, with the highest content being observed in Oblačinska cultivar.


Sour cherries (Prunus cerasusAnthocyanins High-performance liquid chromatography Isolation 



This study was part of the research project 0113006 supported by the Ministry of Science and Technology Republic of Croatia.


  1. 1.
    Fennema R (1998) Food Chemistry third edition. University of Wisconsin-Madison, New York BaselGoogle Scholar
  2. 2.
    Murkovic M, Adam U, Pfannhauser W (2000) J Anal Chem 366:379–381Google Scholar
  3. 3.
    Criqui MH, Ringel BL (1994) Lancet 344:1719–1723CrossRefPubMedGoogle Scholar
  4. 4.
    Frankel EN, Kanner J, German J, Parks B, Kinsella JE (1993) Lancet 341:454–457CrossRefPubMedGoogle Scholar
  5. 5.
    Frankel EN, Waterhouse AL, Teissedre PL (1995) J Agric Food Chem 43:890–894Google Scholar
  6. 6.
    Clifford NM (2000) J Sci Food Agric 80:1063–1072CrossRefGoogle Scholar
  7. 7.
    Robards K, Antolovich M (1997) Analyst 122:11R–34RCrossRefGoogle Scholar
  8. 8.
    Mozetic B, Trebse P (2004) Acta Chim Slov 51:151–158Google Scholar
  9. 9.
    Chaovanalikit A, Wrolstad RE (2004) Journal of Food Science 69(1):101–106Google Scholar
  10. 10.
    Chaovanalikit A, Wrolstad RE (2004) Journal of Food Science 69(1):107–117Google Scholar
  11. 11.
    Urbanyi G, Horti K (1992) Acta Alimentaria 21(3–4):307–323Google Scholar
  12. 12.
    Chandra A, Nair MG Iezzoni A (1993) J Agric Food Chem 41:1062–1065Google Scholar
  13. 13.
    Schmitt A (1995) Lebensmittelchemie 49:79–93Google Scholar
  14. 14.
    Hong V, Wrolstad ER (1990) J Agric Food Chem 38:708–715Google Scholar
  15. 15.
    Mozetič B, Trebše P, Hribar J (2002) Food Technol Biotechnol 40(3):207–212Google Scholar
  16. 16.
    Kucharska AZ, Oszmianski J (2002) J Sci Food Agric 82:1483–1486CrossRefGoogle Scholar
  17. 17.
    Esti M, Cinquanta L, Sinesio F, Moneta E (2002) Food Chem 76:399–405CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Valentina Šimunić
    • 1
    Email author
  • Spomenka Kovač
    • 1
  • Dajana Gašo-Sokač
    • 1
  • Werner Pfannhauser
    • 2
  • Michael Murkovic
    • 2
  1. 1.Faculty of Food TechnologyDepartment for Fundamental and Applied ChemistryOsijekCroatia
  2. 2.Institute for Food Chemistry and TechnologyGraz University of TechnologyGrazAustria

Personalised recommendations