Skip to main content

Heat-induced degradation of inulin


Dry heating of inulin from chicory for up to 60 min at temperatures between 135 and 195 °C resulted in a significant degradation of the fructan ranging from 20 to 100%. The choice of the analytical method has a significant influence on inulin quantification especially in heat-treated samples. The amount of inulin found after thermal treatment measured as fructose after acidic hydrolysis was significantly higher compared with corresponding data obtained with a method based on enzymatic hydrolysis. Using high-performance anion-exchange chromatography with pulsed amperometric detection as well as high-performance thin-layer chromatography, it was found that thermal treatment of inulin leads to a degradation of the long fructose chains and formation of new products, most likely di-D-fructose dianhydrides. These degradation products of inulin are cleavable by acid to fructose monomers, but their glycosidic bonds are no longer accessible for β-fructosidase, thus explaining the discrepancies in inulin quantification with respect to the method used. Inulin degradation must be taken into account when fructan is used as a prebiotic ingredient in thermally treated foods like bakery products.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Boeckner LS, Schnepf MI, Tungland BC (2001) Adv Food Nutr Res 43:1–63

    Google Scholar 

  2. Flamm G, Glinsmann W, Kritchevsky D, Prosky L, Roberfroid M (2001) Crit Rev Food Nutr 41(5):353–362

    CAS  Google Scholar 

  3. Roberfroid MB, Delzenne NM (1998) Annu Rev Nutr 18:117–143

    Article  CAS  PubMed  Google Scholar 

  4. Van Loo J, Coussement P, De Leenheer L, Hoebregs H, Smits G (1995) Crit Rev Food Sci Nutr 35(6):525–552

    PubMed  Google Scholar 

  5. Niness KR (1999) J Nutr 129:1402S–1406S

    CAS  PubMed  Google Scholar 

  6. Coudray C, Tressol JC, Gueux E, Rayssiguier Y (2003) Eur J Nutr 42:91–98

    Article  CAS  PubMed  Google Scholar 

  7. Roberfroid MB, Van Loo JAE, Gibson GR (1998) J Nutr 128:11–19

    CAS  PubMed  Google Scholar 

  8. Gibson GR (1998) Br J Nutr 80:209–212

    Google Scholar 

  9. Kleessen B, Hartmann L, Blaut M (2001) Br J Nutr 86:291–300

    CAS  PubMed  Google Scholar 

  10. Koball G, Habel A (2002) Getreide Mehl Brot 56:198–203

    CAS  Google Scholar 

  11. Korakli M, Hinrichs C, Ehrmann MA, Vogel RF (2003) Eur Food Res Technol 217:530–534

    Article  CAS  Google Scholar 

  12. Hofer K, Jenewein D (1999) Eur Food Res Technol 209:423–427

    Article  CAS  Google Scholar 

  13. Prosky L, Hoebregs H (1999) J Nutr 129:1418S–1423S

    CAS  PubMed  Google Scholar 

  14. Quemener B, Thibault J-F, Coussement P (1994) Lebensm Wiss Technol 27:125–132

    Article  CAS  Google Scholar 

  15. Zuleta A, Sambucetti ME (2001) J Agric Food Chem 49:4570–4572

    Article  CAS  PubMed  Google Scholar 

  16. Fretzdorff B, Welge N (2003) Getreide Mehl Brot 57:147–151

    CAS  Google Scholar 

  17. Praznik W, Cieslik E, Filipiak-Florkiewicz A (2002) Nahrung 46:151–157

    Article  CAS  PubMed  Google Scholar 

  18. Christian TJ, Manley-Harris M (2000) J Agric Food Chem 48:1823–1837

    Article  CAS  PubMed  Google Scholar 

  19. Peris-Tortajada M (2000) In: Nollet LML (ed) Food analysis by HPLC. Marcel Dekker Inc, New York, pp 287–302

  20. CAMAG (1997) Applikationsschriften zur Instrumentellen Dünnschicht-Chromatographie:Bestimmung von Mono-, Di-, Tri- und Polysacchariden

  21. Fretzdorf B, Welge N (2003) Getreide Mehl Brot 57:3–8

    Google Scholar 

  22. Ponder GR, Richards GN (1993) Carbohydr Res 244:341–359

    Article  CAS  PubMed  Google Scholar 

  23. Blize AE, Manley-Harris M, Richards GN (1994) Carbohydr Res 265:31–39

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to T. Henle.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Böhm, A., Kaiser, I., Trebstein, A. et al. Heat-induced degradation of inulin. Eur Food Res Technol 220, 466–471 (2005).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:


  • Inulin
  • Thermal treatment
  • Fructose
  • Di-D-fructose dianhydrides
  • High-performance thin-layer chromatography
  • High-performance anion-exchange chromatography with pulsed amperometric detection