Skip to main content
Log in

Determination of glucosinolate profiles in Chinese vegetables by precursor ion scan and multiple reaction monitoring scan mode (LC-MS/MS)

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Liquid chromatography-electrospray ionization (ESI) mass spectrometry was used to describe the glucosinolate (GSL) profiles in three Chinese vegetables. The strategy was based on first screening for possible glucosinolates via precursor ion scan mode (PreIS). Further validating was done using the multiple reaction monitoring scan mode (MRM). The obtained fragment ions [S=C=NOH] for m/z 75 and [SO4H] for m/z 97 were used in both scan modes to reveal the masses of the GSL precursor ions [M-H] which were further validated by the mostly known chromatographic behavior of the resulting intact GSL. The feasibility of the strategy was first demonstrated using crude extracts of broccoli. The tandem mass spectrometric experiments in negative ion ESI proved to be sensitive and selective enough to rapidly examine the GSL profiles even of crude plant extracts. The results adequately characterize the target differences between various GSL distributions in vegetables induced by treatment of methyl jasmonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a, b
Fig. 2
Fig. 3 a, b
Fig 4 a, b
Fig. 5

Similar content being viewed by others

References

  1. Büning-Pfaue H, Endler R, Lippert F, Scherer H (2002) Lebensmittelchemie 56:53

    Google Scholar 

  2. Bodnaryk RP, Yoshihara T (1995) J Chem Ecol 21:1735–1743

    CAS  Google Scholar 

  3. Botting CH, Davidson NE, Griffith DW, Bennett RN, Botting NP (2002) J Agric Food Chem 50:983–988

    Article  CAS  PubMed  Google Scholar 

  4. Cai Z, Cheung C, Ma W-T, Au W-M, Zhang XY, Lee A (2003) Anal Bioanal Chem,http://www.springerlink.com 28.11.2003

  5. Choi BK, Gusev AI, Hercules DM (1999) Anal Chem 62:957–967

    Google Scholar 

  6. Doughty KJ, Kiddle G, Pye BJ, Wallsgrove RM, Pickett JA (1995) Phytochem 38:347–350

    Article  CAS  Google Scholar 

  7. EC (1990) Off J Eur Comm L 170:03.03.07.27–34

    Google Scholar 

  8. Fenwick GR, Heaney RK, Gmelin R, Rakow D, Theis W (1983) CRC Crit Rev Food Sci Nutr 18:123–201

    CAS  Google Scholar 

  9. Griffith DW, Bain H, Deighton N, Botting NP, Robertson AAB (2000) Phytochem Anal 11:216–225

    Article  Google Scholar 

  10. Griffiths DW, Birch ANE, Hillmann JR (1998) J Hortic Sci Biotechnol 73:1–18

    Article  CAS  Google Scholar 

  11. Hoffmann E (1996) Mass Spectrometry 31:129–137

    Article  Google Scholar 

  12. Kaushik N, Agnihotri A (1999) Chromatographia 49:281–284

    CAS  Google Scholar 

  13. Kiddle G, Doughty KJ, Wallsgrove RM (1994) J Exp Bot 45:1343–1346

    CAS  Google Scholar 

  14. Kiddle G, Bennett RN, Botting, NP; Davidson NE, Robertson AABR, Wallsgrove RM (2001) Phytochem Methods 12:226–242

    Article  CAS  Google Scholar 

  15. Kliebenstein DJ, Lambrix VM, Reichelt M, Gershenzon J (2001) Plant Cell 13:681–693

    Article  CAS  PubMed  Google Scholar 

  16. Matthaus B, Fiebig HJ (1996) J Agric Food Chem 44:3894–3899

    Article  Google Scholar 

  17. Ludwig-Müller J, Bennet RN, Kiddle G, Ihmig S, Ruppel M, Hilgenberg W (1999a) New Phytol 141:443–458

  18. Ludwig-Müller J, Pieper K, Ruppel M, Epstein E, Cohen JD, Kiddle G, Bennet RN (1999b) Planta 208:409–419

    Google Scholar 

  19. Porter AJR, Morton AM, Kiddle G, Doughty KJ, Wallsgrove RM (1991) Ann Appl Biol 188:461–467

    Google Scholar 

  20. Prestera T, Fahey JW, Holtzclaw WD, Abeygunawardana C, Kachinski JL, Talalay P (1996) Anal Biochem 2239:168ff

    Google Scholar 

  21. Rottach S, Ulbrich A, Lippert F, Papagiannopoulos M, Büning-Pfaue (2003) Lebensmittelchemie 57:149

    Google Scholar 

  22. Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) Hortic Rev 19:99–215

    CAS  Google Scholar 

  23. Skutlarek D, Färber H, Büning-Pfaue H (2004) Lebensmittelchemie (in press)

  24. Tolrà RP, Alonso R, Poschenrieder C, Barcelò D, Barceló J (2000) J Chromatogr A 889:75–81

    Article  PubMed  Google Scholar 

  25. Vallejo F, Tomàs-Barberàn C, Garcia-Viguera C (2002) Eur Food Technol 215:310–316

    Article  CAS  Google Scholar 

  26. Wallsgrove RM, Doughty KJ, Bennet RN (1999) Glucosinolates. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York, pp 523–562

  27. Zrybko CL, Fukuda EK, Rosen RT (1997) J Chromatogr 767:43–52

    Article  CAS  Google Scholar 

  28. Buchner R (1987) In: World crops: production, utilisation, description glucosinolates in rapeseeds: analytical aspects. Martinus Nijhoff Publisher, Dordrecht

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Büning-Pfaue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skutlarek, D., Färber, H., Lippert, F. et al. Determination of glucosinolate profiles in Chinese vegetables by precursor ion scan and multiple reaction monitoring scan mode (LC-MS/MS). Eur Food Res Technol 219, 643–649 (2004). https://doi.org/10.1007/s00217-004-1014-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-004-1014-2

Keywords

Navigation