Skip to main content
Log in

Anti/pro-oxidative properties of selected standard chemicals and tea extracts investigated by DNA-based electrochemical biosensor

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

A DNA-modified screen-printed carbon electrode and the [Co(phen)3]3+ complex as an electrochemical DNA marker were used for the evaluation of anti/pro-oxidative properties of α-tocopherol, β-carotene, quercetin, kaempferol and myricetin, as well as various tea extracts. Reactive oxygen species were generated using a model cleavage mixture composed of 5×10−7 M [Cu(phen)2]2+ as the catalyst, 1×10−3 M ascorbic acid as the chemical reductant and air oxygen as the natural oxidant. The antioxidative activity of standard chemicals increases with their concentration, reaching a maximum where prooxidative behaviour becomes of importance. Antioxidative effects of tea exctracts varied with the temperature of their preparation. Similar results were obtained by the 2, 2’-diphenyl-1-picrylhydrazyl free radical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–e
Fig. 2

Similar content being viewed by others

References

  1. Weisburger JH (2001) Mutat Res—Fund Mol Mutagen 480–481:23–35

    Google Scholar 

  2. Ferguson LR (2001) Mutat Res—Fund Mol Mutagen 475:89–111

    Google Scholar 

  3. Galati G, Sabzevari O, Wilson JX, O’Brien PJ (2002) Toxicology 177:91–104

    Article  CAS  PubMed  Google Scholar 

  4. Higdon JV, Frei B (2003) Crit Rev Food Sci 43:89–143

    CAS  Google Scholar 

  5. Riso P, Erba D, Criscuoli F, Testolin G (2002) Nutr Res 22:1143–1150

    Article  CAS  Google Scholar 

  6. Anderson RF, Fisher LJ, Hara Y, Harris T, Mak WB, Melton L D, Packer JE (2001) Carcinogenesis 22:1189–1193

    Article  CAS  PubMed  Google Scholar 

  7. Katiyar SK, Bergamo BM, Vyalil PK, Elmets CA (2001) J Photochem Photobiol B Biol 65:109–114

    Article  CAS  Google Scholar 

  8. Erba D, Riso P, Foti P, Frigerio F, Criscuoli F, Testolin G (2003) Arch Biochem Biophys 416:196–201

    Article  CAS  PubMed  Google Scholar 

  9. Gupta S, Saha B, Giri AK (2002) Mutat Res—Rev Mutat Res 512:37–65

    Google Scholar 

  10. Grey C E, Adlercreutz P (2003) Mutat Res—Fund Mol Mutagen 527:27–36

    Google Scholar 

  11. Glei M, Matuschek M, Steiner C, Böhm V, Persin C, Pool-Zobel BL (2003) Toxicol in Vitro 17:723–729

    Article  CAS  PubMed  Google Scholar 

  12. Furukawa A, Oikawa S, Murata M, Hiraku Y, Kawanishi S (2003) Biochem Pharmacol 66:1769–1778

    Article  CAS  PubMed  Google Scholar 

  13. Labuda J, Bučková M, VanŢčková M, Mattusch J, Wennrich R (1999) Electroanalysis 11:101–107

    Article  CAS  Google Scholar 

  14. Paleček E, Fojta M (2001) Anal Chem 73:74A–83A

    PubMed  Google Scholar 

  15. Paleček E, Jelen F (2002) Crit Rev Anal Chim Acta 32:261–270

    Google Scholar 

  16. Litescu SC, Cioffi N, Sabbatini L, Radu GL (2002) Electroanalysis14:858–865

  17. Bučková M, Labuda J, Šandula J, Križková L, Štepánek I, Ďuračková Z (2002) Talanta 56:939–947

    Article  Google Scholar 

  18. Labuda J, Bučková M, Heilerová Ľ, Čaniová-Žiaková A, Brandšteterová E, Mattusch J, Wennrich R (2002) Sensors 2:1–10

    CAS  Google Scholar 

  19. Labuda J, Bučková M, Heilerová Ľ, Šilhár S, Štepánek I (2003) Anal Bioanal Chem 376:168–173

    CAS  PubMed  Google Scholar 

  20. Korbut O, Bučková M, Labuda J, Gründler P (2003) Sensors 3:1-10

    CAS  Google Scholar 

  21. Heilerová Ľ., Bučková M, TarapčŢk P, Šilhar S, Labuda J (2003) Czech J Food Sci 21:78–84

    Google Scholar 

  22. Pang DW, Abruňa HD (1998) Anal Chem 70:3162–3169

    Article  CAS  PubMed  Google Scholar 

  23. Dollimore LS; Gillard RD (1973) J Chem Soc 78:933–940

    Google Scholar 

  24. Brand-Williams W, Cuvelier ME, Berset C (1995) Lebensm Wiss Technol 28:25–30

    CAS  Google Scholar 

  25. Ohsima H, Yoshie Y, Auriol S, Gilibert I (1998) Free Rad Biol Med 25:1057–1065

    Article  PubMed  Google Scholar 

  26. Johnson MK, Loo G (2000) Mutat Res 459:211–218

    Article  CAS  PubMed  Google Scholar 

  27. Zhang P, Omaye ST (2001) Food Chem Toxicol 29:239–246

    Article  Google Scholar 

  28. Zhang P, Omaye ST (2001) Toxicol in Vitro 15:13–24

    Article  PubMed  Google Scholar 

  29. Zhou R, Zhou Y, Chen D, Li S, Haug A (2000) Toxicol Lett 115:23–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Grant Agency VEGA of the Slovak Republic (Grant No. 1/9253/02) and by the Ministry of Agriculture of the Slovak Republic (Project No. 27–26 /99). Authors’ thanks to S. Bachratá and M. Varga for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adriana Ferancová or Ján Labuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferancová, A., Heilerová, Ľ., Korgová, E. et al. Anti/pro-oxidative properties of selected standard chemicals and tea extracts investigated by DNA-based electrochemical biosensor. Eur Food Res Technol 219, 416–420 (2004). https://doi.org/10.1007/s00217-004-1001-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-004-1001-7

Keywords

Navigation