Skip to main content

In vitro analysis of binding capacities of calcium to phytic acid in different food samples


The present work was performed to study the role which plays phytic acid in calcium binding, and to determine the calcium binding capacities in different foods, using in vitro extractions. Different food samples (soybeans, oats, chickpea, rice flour, and corn semolina) were extracted for 4 h at 37 °C using artificial simulated gastrointestinal juice (pepsin) at pH=2. The total calcium and phytic acid concentrations were determined by AAS and capillary electrophoresis, respectively, at pH=2 and pH=8 after neutralisation with a sodium hydroxide solution (3 M). Having determined the binding capacities of calcium in each food, we then use these results to estimate the fraction of calcium available for resorption during the process of digestion, when food moves from the acid pH of the stomach to the alkaline milieu of the intestines. The results obtained for the foods analysed show that the capacity of calcium to bind to phytic acid exhibits a clear pH dependence. The calculated calcium binding capacities, or the molar ratio of calcium to phytic acid in the in vitro extracted foods, varies from 3 mol calcium per mol phytic acid for soybean, chickpea and oats, to 2 mol calcium per mol phytic acid for rice, to1 mol calcium per mol phytic acid in corn semolina. Calcium may bind to one or more of the phosphate groups of phytic acid. Previous studies have demonstrated that phytic acid has the ability to bind minerals, proteins, and starch, and have then considered it as an inhibitor to the bioavailability of minerals and trace elements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Nordin BE (1997) Food Nutr Agr 20:3–26

    Google Scholar 

  2. 2.

    Frossard E, Bucher M, Mächler F, Mozafar A, Hurrell R (2000) J Sci Food Agric 80:861–879

    Article  CAS  Google Scholar 

  3. 3.

    Harpreet KG, Charanjeet KH, Kawatra BL (1999) J Food Sci Tech 36(5):453–456

    Google Scholar 

  4. 4.

    Kamao M, Tsugawa N, Nakagwa K (2000) J Nutr Sci Vitaminol 46:34–41

    CAS  PubMed  Google Scholar 

  5. 5.

    Hansen M, Sandström B, Lônnerdal B (1996) Pediatr Res 40(4):547–552

    CAS  PubMed  Google Scholar 

  6. 6.

    Walter A, Rimbach G, Most E, Pallauf J (2000) J Vet Med A 47:367–377

    Article  CAS  Google Scholar 

  7. 7.

    Siequeira EMA et al (2001) Arch Latinoam Nutr 51(3):250–257

    PubMed  Google Scholar 

  8. 8.

    Nolan KB, Duffin PA (1987) J Sci Food Agric 40:79–85

    CAS  Google Scholar 

  9. 9.

    Kennefick S, Cashman KD (2000) Int J Food Sci Nutr 51:45–54

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Shen L, Robberecht H, Van deal P, Deelstra H (1995) Biol Trace Elem Res 49:107–118

    CAS  PubMed  Google Scholar 

  11. 11.

    Van Dyck K, Tas S, Robberecht H, Deelstra H (1996) Int J Food Sci Nutr 47:499–506

    PubMed  Google Scholar 

  12. 12.

    Siener R, Heynck H, Hesse A (2001) J Agr Food Chem 49:4397–4401

    Article  CAS  Google Scholar 

  13. 13.

    Dendougui F, Schwedt G (2002) Eur Food Res Technol 215(1):76–82

    Article  CAS  Google Scholar 

  14. 14.

    Sarriá B, Vaquero MP (2001) J Nutr Biochem 12:266–273

    Article  PubMed  Google Scholar 

  15. 15.

    Pabón ML, Lönnerdal B (2000) J Trace Elem Med Bio 14:146–153

    Google Scholar 

  16. 16.

    Bosscher D, Lu Z, Janssens G, Van Caillie-Bertrand M (2001) Brit J Nutr 86:241–247

    CAS  PubMed  Google Scholar 

  17. 17.

    Walters MGE, Schreuder HAW, Van den Heuvel G et al (1993) Brit J Nutr 69:849–861

    PubMed  Google Scholar 

  18. 18.

    Mamiro PRS, Van Camp J, Mwikya SM, Huyghebaret A (2001) J Food Sci 66(9):1271–1275

    CAS  Google Scholar 

  19. 19.

    Bosscher D, Lu Z, Van Caillie-Bertrand M, Robberecht H, De Bruyne T, De Rycke H, Janssens GPJ, De Wilde R, Deelstra H (2001) Brit J Nutr 86:241–247

    CAS  PubMed  Google Scholar 

  20. 20.

    Shen L, Luten J, Robberecht H, Bindels J, Deelstra H (1994) Eur Food Res Technol 199:442–445

    CAS  Google Scholar 

  21. 21.

    Fairweather-Tait SJ, Hurrell RF (1996) Nutr Res Rev 9:295–324

    Google Scholar 

  22. 22.

    Frolich W (1995) Eur J Clin Nutr 49 (3):116–122

    Google Scholar 

  23. 23.

    Bosscher D, Van Dyck K, Robberecht H, Van Caillie-Bertrand M, Deelstra H (1998) Int J Food Sci Nutr 49:277–283

    CAS  Google Scholar 

  24. 24.

    Roig MJ, Alegría A, Barberà R, Farré R, Lagarda MJ (1999) Food Chem 65:353–357

    Article  CAS  Google Scholar 

  25. 25.

    Roig MJ, Alegría A, Barberà R, Farré R, Lagarda MJ (1999) Food Chem 64:403–409

    Article  CAS  Google Scholar 

  26. 26.

    Wienk KJH, Marx JJM, Beynen AC (1999) Eur J Nutr 38:51–57

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Jovaní M, Barberá R, Farré R, Martín de Aguilera E (2001) J Agr Food Chem 49:3480–3485

    Article  Google Scholar 

  28. 28.

    Ekmekcioglu C, Pomazal K, Steffan I, Schweiger B, Marktl W (1999) J Agr Food Chem 47:2594–2599

    Article  CAS  Google Scholar 

  29. 29.

    Oatway L, Vasanthan T, Hels JH (2001) Food Rev Int 17(4):419–431

    Article  CAS  Google Scholar 

  30. 30.

    Asada K, Tanaka K, Kasai Z (1969) Ann NY Acad Sci 165:801–814

    CAS  PubMed  Google Scholar 

  31. 31.

    Williams SG (1970) Plant Physiol 45:376–381

    CAS  Google Scholar 

  32. 32.

    Graf E, Epson KL, Eaton JW (1987) J Biol Chem 262:11647–11650

    CAS  PubMed  Google Scholar 

  33. 33.

    Reddy NR, Sathe SK, Salunkhe DK (1982) Adv Food Res 28:1–92

    CAS  PubMed  Google Scholar 

  34. 34.

    Urbano G, López-Jurado M, Aranda P, Vidal-Valeverde C, Tenorio E, Porres J (2000) J Physiol Biochem 56(3):283–294

    CAS  PubMed  Google Scholar 

  35. 35.

    Rickard SE, Thompson LU (1997) Interactions and biological effects of phytic acid. In: Shahidi F (ed) Antinutrients and phytochemicals in foods (ACS Symposium Series 662). American Chemical Society, Washington, DC, pp 294–312

  36. 36.

    Johnson LF, Tate ME (1969) Can J Chem 47:63–73

    CAS  Google Scholar 

  37. 37.

    Cheryan M (1980) Crit Rev Food Sci 13:297–301

    CAS  Google Scholar 

  38. 38.

    Grases F, Simonet BM, Vucenik I, Prieto RM, Costa-Bauzá A, March JG, Shamsuddin AM (2001) Biofactors 15:53–61

    CAS  PubMed  Google Scholar 

  39. 39.

    Loewus FA, Murthy PPN (2000) Plant Sci 150:1–19

    Article  CAS  Google Scholar 

  40. 40.

    Bosscher D, Van Caillie-Bertrand M, Robberecht H, Van Dyck K, Van Cauwenbergh, Deelstra H (2001) J Pediatr Gastr Nutr 32:54–58

    Article  CAS  Google Scholar 

  41. 41.

    Guillem A, Alegría A, Barberà R, Farré R, Lagarda MJ, Clemente G (2000) Biol Trace Elem Res 3:1–8

    Google Scholar 

  42. 42.

    Heseker B, Heseker H (1999) Nährstoffe in lebensmitteln. Umschauzeitschriftenverlag Breidenstein GmbH, Frankfurt am Main

  43. 43.

    Souci SW, Fachmann W, Kraut H (1994) Food composition and nutrition tables (5th revised and completed edn). MedPharm Scientific, Stuttgart, Germany (CRC, Boca Raton, FL)

  44. 44.

    Dendougui F, Schwedt G (2002) Deut Lebensm–Rundsch 98:183–189

    Google Scholar 

  45. 45.

    Graf E (1983) J Agr Food Chem 31:851–855

    CAS  Google Scholar 

  46. 46.

    Grases F, Simonet BM, Prieto RM, March JG (2001) J Trace Elem Med Bio 15:221–228

    CAS  Google Scholar 

  47. 47.

    Erdman JW Jr (1979) J Am Oil Chem Soc 56:736–741

    CAS  Google Scholar 

  48. 48.

    Allen LH (1982) Am J Clin Nutr 35:783–808

    PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Georg Schwedt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dendougui, F., Schwedt, G. In vitro analysis of binding capacities of calcium to phytic acid in different food samples. Eur Food Res Technol 219, 409–415 (2004).

Download citation


  • Calcium binding capacity
  • Bioavailability
  • Phytic acid
  • Food analysis
  • In vitro extraction