European Food Research and Technology

, Volume 218, Issue 3, pp 269–273 | Cite as

Tracing residual recombinant feed molecules during digestion and rumen bacterial diversity in cattle fed transgene maize

  • Ralf EinspanierEmail author
  • Bodo Lutz
  • Stefanie Rief
  • Oksana Berezina
  • Vladimir Zverlov
  • Wolfgang Schwarz
  • Johann Mayer
Original Paper


The aim of this study was to trace selected nucleic acid and protein components of isogene versus Bt transgene maize within the bovine gastrointestinal tract (GIT). After feeding 22 cattle for 4 weeks with Bt176 maize, different plant genes and the recombinant protein CryIAb were quantified during digestion. Furthermore, a first initial characterization of rumen bacteria was approached, using 16rDNA gene sequencing comparing isogene- against transgene-fed animals. Ingesta samples of different GIT sections (rumen, abomasum, jejunum, colon) were analysed for chloroplast, maize invertase, zein and Bt toxin (CryIAb) gene fragments using quantitative real-time PCR. First, the initial gene dose of these maize genes was detected in maize silage. During digestion, a significant reduction of high-to-medium abundant plant gene fragments was shown depending on the dwell-time and the initial gene copy number. Immunoreactive CryIAb protein was quantified by ELISA in intestinal samples indicating a significant loss of that protein. Remarkable amounts of Bt toxin were found in all contents of the GIT and the protein was still present in faeces. For the first time, the influence of CryIAb transgene maize on rumen bacterial microflora was investigated compared to isogene material through analysis of 497 individual bacterial 16S rDNA sequences. In principle, specific bacterial leader-species could be identified in all bovine rumen extracts, but no significant influence of Bt176 maize feed was found on the composition of the microbial population. This investigation provides supplementing data to further evaluate the fate of novel recombinant material originating from transgene feed or food within the mammalian GIT.


Bt maize Cattle Intestinal tract CryIAb protein Plant DNA 



This study was supported by the BMBF project 01K0-31P2614. The authors gratefully acknowledge the skilful assistance and help of Stefanie Schiebe, Tamara Steltzl, Inge Celler (Freising), Rutzmoser and Steinberger (Grub).


  1. 1.
    van Duijn GJ, van Biert R, Bleeker-Marcelis H, van Boeijen I, Ada AJ, Jhakrie S, Hessing M (2002) JAOAC Int 85:787–791Google Scholar
  2. 2.
    Einspanier R, Klotz A, Kraft J, Aulrich K, Poser R, Schwägele F, Jahreis G, Flachowsky G (2001) Eur Food Res Technol 212:129–134Google Scholar
  3. 3.
    Klotz A, Mayer J, Einspanier R (2002) Eur Food Res Technol 214:271–275CrossRefGoogle Scholar
  4. 4.
    Doerfler W, Schubbert R (1998) Wien Klin Wochenschr 110:40–44PubMedGoogle Scholar
  5. 5.
    Schubbert R, Renz D, Schmitz B, Doerfler W (1997) Proc Natl Acad Sci USA 94:961–966PubMedGoogle Scholar
  6. 6.
    Doerfler W, Schubbert R, Heller H, Kämmer C, Hilger-Eversheim K, Knoblauch M, Remus R (1997) Tibtech 15:297–301CrossRefGoogle Scholar
  7. 7.
    Doerfler W (2000) Foreign DNA in mammalian systems. Wiley-VCH, Weinheim, New YorkGoogle Scholar
  8. 8.
    Anklam E, Gadani F, Heinze P, Pijnenburg H, Van Den Eede G (2002) Eur Food Res Technol 214:3–26CrossRefGoogle Scholar
  9. 9.
    Vaitilingom M, Pijnenburg H, Gendre F, Brignon P (1999) J Agric Food Chem 47:5261–5266PubMedGoogle Scholar
  10. 10.
    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal Biochem 150:76–85PubMedGoogle Scholar
  11. 11.
    Klaften M, WhetsellA, WebsterJ, GrewalR, Fedyk E, Einspanier R, Jennings J, Lirette R, Glenn K (2004) Development of PCR methods to detect plant DNA in animal tissue. In: Bhalgat MM, Ridley W P, Felsot A S, Seiber J N (eds) Agricultural biotechnology: challenges and prospects. ACS Symposium Series 866, American Chemical Society ,Washington D.C., pp 83–99Google Scholar
  12. 12.
    Bendich AJ (1987) BioEssays 6:279–282PubMedGoogle Scholar
  13. 13.
    Hupfer C, Meyer J, Hotzel H, Sachse K, Engel K-H (1999) Eur Food Res Technol 209:301–304CrossRefGoogle Scholar
  14. 14.
    Chiter A, Forbes M, Blair GE (2000) FEBS Lett 481:164–168CrossRefPubMedGoogle Scholar
  15. 15.
    Aumaitre A, Aulrich K, Chesson A, Flachowsky G, Piva G (2002) Livestock Prod Sci 74:223–238CrossRefGoogle Scholar
  16. 16.
    Chowdhury EH, Shimada N, Murata H, Mikami O, Sultana P, Miyazaki S, Yoshioka M, Yamanaka N, Hirai N, Nakajima Y (2003) Vet Hum Toxicol 45:72–75PubMedGoogle Scholar
  17. 17.
    Ehlers B, Strauch E, Goltz M, Kubsch D, Wagner H, Maidhof H, Bendiek J, Appel B, Buhk H-J (1997) Bundesgesundheitsblatt 40:118–121Google Scholar
  18. 18.
    Studer E, Dahinden I, Lüthy J, Hübner P (1997) Mitt Geb Lebensmittelunters Hyg 88:515–524Google Scholar
  19. 19.
    Hupfer C, Hotzel H, Sachse K, Engel K-H (1998) Z Lebensm Unters Forsch A 206:203–207CrossRefGoogle Scholar
  20. 20.
    Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M (2002), Appl Environ Microbiol 68:5064–81Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ralf Einspanier
    • 1
    Email author
  • Bodo Lutz
    • 2
  • Stefanie Rief
    • 2
  • Oksana Berezina
    • 3
  • Vladimir Zverlov
    • 4
  • Wolfgang Schwarz
    • 4
  • Johann Mayer
    • 5
  1. 1.Institute of Veterinary BiochemistryFree University of BerlinBerlinGermany
  2. 2.Institute of PhysiologyTUMFreisingGermany
  3. 3.Institute of Molecular Genetics RASMoscowRussiaRussia
  4. 4.Institute of MicrobiologyTUMFreisingGermany
  5. 5.Bavarian State Research Center for AgriculturePoingGermany

Personalised recommendations