Skip to main content
Log in

Development of organic phase amperometric biosensor for measuring cholesterol in food samples

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Previous works on organic phase enzyme electrodes (OPEE) applied methods that worked mostly under stirred conditions. The aim of our present work was to develop a flow-through measuring set-up for determination of cholesterol content in organic media. For determination of free cholesterol content cholesterol oxidase (COD) was used, while for measuring the total cholesterol content a bi-enzyme cell containing immobilised cholesterol esterase (CE) and cholesterol oxidase was developed. Enzyme immobilisation took place on a natural protein membrane, by a glutaraldehyde cross-linking method, in a thin-layer enzyme cell made from Teflon. The enzyme cell was connected into a stopped-flow injection system (SFIA), with a flow-through amperometric detector. The parameters of biochemical and electrochemical reactions were measured. The effect on amperometric detection of different organic salts as electron mediator or conducting salts was studied. The optimal concentration of (TBATS) was 2.4 mg L−1 while for (FMCA) an optimal concentration was found at 0.4 mg L−1. The minimum amount of water, necessary for enzymatic activity in the organic phase, was also determined. Changing the concentration of toluene in acetonitrile carrier solution, the peaks increased definitely in the range 10–40% toluene. Since CE and COD were immobilised together in the enzyme cell, the conversion rate was found to be about 0.7–0.8 when the toluene content was higher then 30%. The linear measuring range for cholesterol oleate and cholesterol was 0.1–0.5 mM. Total cholesterol content of lard, butter and pasta samples were determined. It is concluded that an organic phase bi-enzyme cell may be suitable for cholesterol determination in food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Karam WG, Chiang JYL (1994) J Lipid Res 35:1222–2131

    CAS  PubMed  Google Scholar 

  2. Ram MK, Bertoncello P, Ding H, Paddeu S, Nicolini C (2001) Biosens Bioelectr 16:849–856

    Article  CAS  PubMed  Google Scholar 

  3. Vidal JC, Garcia-Ruiz E, Castillo JR (2000) J Pharm Biomed Anal 24:51–63

    Article  CAS  PubMed  Google Scholar 

  4. Gobi K, Mizutani F (2001) Sensors Actuators B 4062:1-6

    Google Scholar 

  5. Situmorang M, Alexander PW, Hibbert DB (1999) Talanta 49/3:639–649

  6. Bongiovanni C, Ferri T, Poscia A, Varalli M, Santucci R, Desideri A (2001) Bioelectrochemistry 54:17–22

    Article  CAS  PubMed  Google Scholar 

  7. Yao T, Sato M, Kobayashi Y, Wasa T (1985) Anal Biochem 149:387–391

    CAS  PubMed  Google Scholar 

  8. Krug A, Suleiman AA, Guilbault GG, Kellner R (1992) Enzyme Microb Technol 14:313–316

    Article  CAS  PubMed  Google Scholar 

  9. Baticz O, Tömösközi S (2002) Nahrung 46:46–50

    Article  CAS  PubMed  Google Scholar 

  10. Buckland BC, Dunnill P, Lilly D (1975) Biotechnol Bioeng 17:815–826

    CAS  Google Scholar 

  11. Liu WH, Houng WC, Tsai MS (1996) Enzyme Microb Technol 18:184–189

    Article  CAS  Google Scholar 

  12. Narayan VS, Klibanov AM (1993) Biotech Bioeng 41:390–393

    CAS  Google Scholar 

  13. Kazandjian RZ, Dordick JS, Klibanov AM (1986) Biotechnol Bioeng 28:417–421

    Google Scholar 

  14. Zaks A, Klibanov AM (1988) Biol Chem 263:3194–3201

    PubMed  Google Scholar 

  15. Dordick JS (1989) Enzyme Microb Technol 11:194–211

    CAS  Google Scholar 

  16. Pineiro-Availa G, Salvador A, de la Guardia M (1998) Analyst 123:999–1003

    Article  PubMed  Google Scholar 

  17. Kumar H, Kumar A, Kumari P, Jyotirmai S, Tulsani NB (1999) Biotechnol Appl Biochem 30:231–233

    CAS  PubMed  Google Scholar 

  18. Hall GF, Turner APF (1991) Anal Lett 24:1375–1388

    CAS  Google Scholar 

  19. Campanella L, Tomassetti M (1996) Food Technol Biotechnol 34:131–141

    CAS  Google Scholar 

  20. Pena N, Ruiz G, Reviejo AJ, Pingarron JM (2001) Anal Chem 73(6):1190–1195

    Article  CAS  PubMed  Google Scholar 

  21. Klibanov AM (1986) Chemtech 354–358

  22. Rong-Zhen-Zhang, Long-Li, Shu-Tao-Liu, Ru-Ming-Chen, Ping-Fan-Rao, (1999) J Food Biochem 23:351–361

    Google Scholar 

  23. Johnson JH, McIntyre P, Zdunek J (1995) J Chromatogr A 718:371–81

    Article  CAS  PubMed  Google Scholar 

  24. Váradi M, Adányi N, Nagy G, Rezessy-Szabó J (1993) Biosens Bioelectr 8:339–345

    Article  Google Scholar 

  25. Adányi N, Tóth-Markus M, Szabó EE, Váradi M, Sammartino MP, Tomassetti M, Campanella L (2003) Anal Chim Acta (submitted)

  26. Holland B, Welch AA, Unwin ID, Buss DH, Paul AA, Southgate DAT (eds) (1992) McCance and Widdowson’s The composition of foods. RSC, Cambridge

  27. Choong YM, Lin HJ, Wang ML (1999) J Food Drug Analysis 7(4):279–290

    CAS  Google Scholar 

  28. Lee SY, Rhee HI, Tae WC, Shin JC, Park BK (1989) Appl. Microbiol Biotechnol 31:542–546

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nóra Adányi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adányi, N., Váradi, M. Development of organic phase amperometric biosensor for measuring cholesterol in food samples. Eur Food Res Technol 218, 99–104 (2003). https://doi.org/10.1007/s00217-003-0805-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-003-0805-1

Keywords

Navigation