European Food Research and Technology

, Volume 217, Issue 3, pp 230–234 | Cite as

Adsorption isotherm and heat of sorption of fresh- and osmo-oven dried plantain slices

Original Paper


Firm ripe plantain was transversely cut into 10-mm slices and osmotically pretreated in 52 °, 60 ° and 68 °B sucrose solutions, for 12 h at 25 °C. Fresh- and osmosed plantain slices were air-dried in a cross flow forced draught oven at 60 °C for 72 h. Adsorption isotherms of the products were determined at 20 °C and 40 °C, using a gravimetric-static method. Adsorption data were fitted into eight isotherm models. Isosteric heat of sorption was calculated using the Clausius-Clapeyron equation. Adsorption isotherms of fresh- and osmo-oven dried plantain slices followed type I (J-shaped) isotherms, characteristic of high sugar products. Inversion of 20 C and 40 C isotherms occurred between aw 0.65 and 0.70. Among the models tested, the Guggenhein Anderson deBoer (GAB) gave the best fit. Isosteric heat of sorption increased with decreasing moisture contents. Negative isosteric heat of sorption occurred at high moisture content. Moreover, isosteric heat of sorption increased with increase in sucrose solution concentration during the osmotic dehydration prior to oven drying.


Adsorption isotherms Osmotic dehydration Oven drying Plantain slices Heat of sorption 


  1. 1.
    Ogazi PO (1986). Nigeria Food J 4(1):121–124Google Scholar
  2. 2.
    Ogazi PO (1995). Plantain storage and processing. Proceedings, Conference on post-harvest Technology and commodity marketing in West Africa, 29 Nov to 1 Dec 1995, Accra, GhanaGoogle Scholar
  3. 3.
    Panagiotu NM, Karanthanos OT, Maroulis ZB (1999) Drying Technology 17(1&2), 175–189.Google Scholar
  4. 4.
    Sankat CK, Castaigne F, Maharaj R (1996). Intl J Food Sci Technol 31:123–135Google Scholar
  5. 5.
    Saurel R, Raoult-Wack AL, Rios, Guilbert S (1994) Intl J Food Sci Technol 29:531–542Google Scholar
  6. 6.
    Rastogi NK, Niranjan K (1998). J Food Sci 63:508–511Google Scholar
  7. 7.
    Rastogi NK, Angersbach A, Knorr D (2000). J Food Sci 65(6): 1016–1019Google Scholar
  8. 8.
    Rastogi NK, Eshtiaghi MN, Knorr D (1999) J Food Sci 64:1020–1023Google Scholar
  9. 9.
    Beristain CI, Azuara E, Cortes R, Garcia HS (1990) Intl J Food Sci and Technol 25:576–582Google Scholar
  10. 10.
    Diosady LL, Rizvi SSH, Cai W, Jagdeo DJ (1996) J Food Sci 61(1):204Google Scholar
  11. 11.
    Tsami E, Maroulis ZB, Marinos-Kouris D, Saravacos GD (1990) Intl J Food Sci and Technol 25:350–359Google Scholar
  12. 12.
    Rizvi SSH (1986) Thermodynamic properties of foods in dehydration. In: Rao MA, Rizvi SSH (eds) Engineering properties of foods. Marcel Dekker, New York, pp133–214Google Scholar
  13. 13.
    United Fruit Sales Corporation (1964). Banana ripening guide Boston. Ma. USAGoogle Scholar
  14. 14.
    Perry RH, Green DW, Maloney JO (eds) (1984) Perry's chemical engineer's handbook, 6th edn. McGraw-Hill, New York, USAGoogle Scholar
  15. 15.
    Bolin HR (1980) J Food Sci 45:1190–1192Google Scholar
  16. 16.
    Brunaeur S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309Google Scholar
  17. 17.
    Ayranci E, Ayanci G, Dogantan Z (1990) J Food Sci 55:1591–1593Google Scholar
  18. 18.
    Weisser H (1985) Influence of temperature on sorption equilibria. In: Simatos D, Multon JL (eds) Properties of water in foods. Martinus Nijhoff, Dordrecht, ppGoogle Scholar
  19. 19.
    Saltmarch M, Labuza TP (1980) J Food Sci 45:1231Google Scholar
  20. 20.
    Hill PE, Rizvi SSH (1982) Lebensm Wiss Technol 15:185Google Scholar
  21. 21.
    Manuel M, Sereno AM (1993) Intl J Food Sci Technol 28:241–248.Google Scholar
  22. 22.
    Tsami E, Maroulis ZB, Marinos-Kouris D, Saravacos GD (1990) Intl J Food Sci Technol 25:350–359Google Scholar
  23. 23.
    Saravacos GD, Tsiourvas DA, Tsami E (1986) J Food Sci 51:381–383Google Scholar
  24. 24.
    Weisser H, Weber J, Lonci M (1982) Lebensm Technol Verfahrenstechnik :33–39Google Scholar
  25. 25.
    Oswin CR (1946) J Chem Ind 65:419–423Google Scholar
  26. 26.
    Halsey G (1948) J Chem Phys 16:931–937Google Scholar
  27. 27.
    Henderson SM (1952) Agri Eng 33:29–32Google Scholar
  28. 28.
    Chung DJ, Pfost HD (1967) Trans Am Soc Agri Eng 10:552–555Google Scholar
  29. 29.
    Chen CS (1971). Trans Am Soc Agri Eng 14:924–926Google Scholar
  30. 30.
    Smith SE (1947) J Am Chem Soc 69:646Google Scholar
  31. 31.
    Van den Berg C, Bruin S (1981) Water activity and its estimation in food systems: theoretical aspects. In: Rockland LB, Stewart GE (eds) Water activity: influence on food quality. Academic Press, New YorkGoogle Scholar
  32. 32.
    Paakkonen K, Plitt L (1991) J Food Sci 56:1597–1599Google Scholar
  33. 33.
    Rapusas RS, Driscoll RH, Buckle KA (1993)Food Aust 45(6):278–282Google Scholar
  34. 34.
    Iglesias HA, Chirife J (1976) Lebensm Wiss Technol 9:107Google Scholar
  35. 35.
    Iglesias HA, Chirife J, Lombardi JL (1975) J Food Technol 10:589–602Google Scholar
  36. 36.
    Sopade PA, Ajisegiri ES, Abass AB (1996) Food Control 7(3):153–156CrossRefGoogle Scholar
  37. 37.
    Lim LT, Tang J, He J (1995) J Food Sci 60:810–813Google Scholar
  38. 38.
    Moreira R, Vazques G, Chenlo F (2002) Electronic J Env Agric Food Chem 1:1-13Google Scholar
  39. 39.
    Tsami E (1991) J Food Eng 14:327–335Google Scholar
  40. 40.
    Mulet A, Garcia-Reverter J, Sanjuan R, Bon J(1999) J Food Sci 64:64Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Food TechnologyUniversity of IbadanIbadanNigeria

Personalised recommendations