Skip to main content
Log in

Content of amino acids in fresh and preserved physiologically immature grass pea (Lathyrus sativus L.) seeds

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The aim of the work was to determine the level of amino acids in fresh and preserved physiologically immature grass pea seeds. Seeds of the grass pea cv. Krab at five stages of maturity, corresponding to dry matter content from 26 to 50%, were evaluated. The estimation was conducted at the stages of the raw material, the frozen product after 6 months storage cooked to consumption consistency, and the canned product within 6 months of production. In the later stages of seed maturity the content of total amino acids and of total non-essential, essential, and sulphuric amino acids computed per 100 g fresh matter increased. The computation per 16 g N showed increasing amounts of sulphuric amino acids and variation depending on the degree of maturity in the content of the remaining amino acids. Cystine with methionine were amino acids limiting the biological value of the first order, irrespective of the degree of maturity, leucine playing the same role with regard to the second order. For these amino acids the index of the limiting amino acid was 64–82 and 83–95 for the raw material, 72–77 and 91–99 for frozen seeds after cooking, and 70–75 and 86–99 for canned seeds. The integrated index of essential amino acids, depending on the degree of maturity, for the raw material was 120–126, for frozen seeds cooked 123–126, and for canned seeds 120–123.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Champ M (2001) Benefits of pulses in human diet. In: 4th European Conference on Grain Legumes: Towards the sustainable production of healthy food, feed and novel products, 8-12 July 2001, AEP Cracow-Poland, pp 109-113

  2. Akalu G, Johansson G, Nair BM (1998) Food Chem 62:233–237

    Article  CAS  Google Scholar 

  3. Przybylska J (1999) Postępy Nauk Roln l: 33–43 (English summary)

  4. Gaborcik N, Pastucha L (1995) Pol'nohospodarstvo 41:742–748

    Google Scholar 

  5. Lisiewska Z, Kmiecik W, Korus A (2001) Eur Food Res Technol 213:343–348

    Article  CAS  Google Scholar 

  6. Korus A (2002) Żywność l:79–87 (English summary)

  7. Amr AS, Yaseen EI (1994) Int J Food Sci Technol 29:441–448

    CAS  Google Scholar 

  8. Bates RP, Matthews RF (1975) Proc Fl State Hortic Soc 88:266–271

    Google Scholar 

  9. Kmiecik W, Lisiewska Z, Jaworska G (2000) J Food Comp Anal 13:905–914

    Article  CAS  Google Scholar 

  10. Veres M (1987) Hrana Ishrana 28:154–158

    Google Scholar 

  11. Moore S, Spackman DH, Stein WH (1958) Anal Chem 30:1185–1190

    CAS  Google Scholar 

  12. Spackman DH (1963) Fed Proc 22:244–245

    Google Scholar 

  13. Mitchell HH, Block RJ (1946) J Biol Chem 163:599–604

    CAS  Google Scholar 

  14. Oser BL (1951) J Am Diet Assoc 27:396–399

    CAS  Google Scholar 

  15. FAO/WHO (1991) Protein quality evaluation. Report Series 51, FAO/WHO, Rome

  16. Kmiecik W, Lisiewska Z (1987) Acta Agrar Silvestria 26:55–68

    Google Scholar 

  17. Daveby YD, Abrahamsson M, Aman P (1993) J Sci Food Agric 63:21–28

    CAS  Google Scholar 

  18. Islam MN, Lea RA (1981) J Food Sci 46:658–659

    CAS  Google Scholar 

  19. Brunsgaard G, Kidmose U, Kaack K, Eggum BO (1994) J Sci Food Agric 65:363–370

    CAS  Google Scholar 

  20. Kuo YH, Bau HM, Quemener B, Khan JK, Lambein F (1995) J Sci Food Agric 69:81–89

    CAS  Google Scholar 

  21. Kmiecik W, Lisiewska Z, Gębczyński P (1999) J Sci Food Agric 79:555–560

    Article  CAS  Google Scholar 

  22. Siddhuraju P, Vijayakumari K, Janardhanan K (1996) J Agric Food Chem 44:2636–2641

    Article  CAS  Google Scholar 

  23. Wu W, Williams WP, Kunkel ME, Acton JC, Wardlaw FB, Huang Y, Grimes LW (1994) J Food Sci 59:1187–1191

    CAS  Google Scholar 

  24. Lisiewska Z, Kmiecik W (1990) Acta Aliment Pol 16:67–73

    Google Scholar 

  25. Mutia R, Uchida S (1993) Asian-Aust J Anim Sci 6:19–26

    Google Scholar 

  26. Ziena HM, Youssef MM, El-Mahdy AR (1991) J Food Sci 56:1347–1352

    CAS  Google Scholar 

  27. Khalil AH, Mansour EH (1995) Food Chem 54:177–182

    Article  CAS  Google Scholar 

  28. Youssef MM, Hamza MA, Abd El-Aal MH, Shekib LA, El-Banna AA (1986) Food Chem 22:225–233

    CAS  Google Scholar 

  29. Candela M, Astiasaran I, Bello J (1997) J Agric Food Chem 45:4763–4767

    Article  CAS  Google Scholar 

  30. Chau CF, Cheung PCK, Wong YS (1997) J Sci Food Agric 75:447–452

    Article  CAS  Google Scholar 

  31. Sayeed S, Njaa LR (1985) Qual Plant Plant Foods Hum Nutr 35:379–388

    CAS  Google Scholar 

  32. Lee CY, Parsons GF, Downing DL (1982) J Food Sci 47:1034–1035

    CAS  Google Scholar 

  33. Lisiewska Z, Kmiecik W, Gębczyński P (1999) Nahrung 43:95–99

    CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out within the project 5 P06G 065 19 financed by State Committee for Scientific Research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zofia Lisiewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korus, A., Lisiewska, Z. & Kmiecik, W. Content of amino acids in fresh and preserved physiologically immature grass pea (Lathyrus sativus L.) seeds. Eur Food Res Technol 217, 148–153 (2003). https://doi.org/10.1007/s00217-003-0713-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-003-0713-4

Keywords

Navigation