Skip to main content

Advertisement

Log in

An interactive R-based custom quantification program for semi-quantitative analysis of triacylglycerols in bovine milk

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The R programming language, RStudio, and open-source software solutions for analysis of liquid chromatography-mass spectrometry (LC–MS) data have been used with user-written R-based custom quantification programs (CQP) for semi-quantification of triacylglycerols (TAGs) in bovine milk lipid extracts. Using the peak-finding capabilities of the package “xcms” in RStudio, peaks were integrated, and retention times aligned, normalized, and then used for semi-quantitative analysis of a custom set of four extraction internal standards (EISs) and 29 TAG regioisomers using the choice of four analytical internal standards (AISs). Alternating stereospecific numbering (sn) 1,3 TAG regioisomers (standards 1, 3, and 5 of six calibration standards) and sn-1,2 TAG regioisomers (standards 2, 4, and 6 of six standards) were used to make a set of six calibration standards, which were used for quantification using a linear fit model, polynomial fit model, power fit model, level-bracketed linear fit, replicate-bracketed polynomial fit, replicate-bracketed power fit, and replicate- and level-bracketed linear fit and response factors. For example, the linear fit for EIS1 gave an unacceptable coefficient of determination (CoD), r2 = 0.9616, whereas the polynomial fit gave r2 = 0.9908 and the power fit gave r2 = 0.9928, while the double-bracketed linear fit gave CoDs of r2 = 0.9960, 0.9848, and 0.9781 for the three brackets, yet gave the least % difference to known calibration concentrations. For unparalleled transparency, the CQP produced webpages that allowed every step in the data processing and quantification sequence to be verified and reproduced, and contained interactive figures. The data are publicly available using a digital object identifier (DOI). The R code can be downloaded and used with the downloadable data to reproduce the results, to modify the code and further customize the results, or to copy and paste and adapt the code to other quantification applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The dataset analyzed for the current report is available at Ag Data Commons at https://dx.doi.org/https://doi.org/10.15482/USDA.ADC/1529615. The R code and output webpages and figures are available at https://figshare.com/s/8d7769d8f892dc619d0f.

References

  1. Byrdwell WC, Kotapati HK. Multi-Dimensional Liquid Chromatography of Pulse Triacylglycerols with Triple Parallel Mass Spectrometry. Separations. 2023;10:594. https://doi.org/10.3390/separations10120594.

    Article  CAS  Google Scholar 

  2. Byrdwell WC, Kotapati HK, Goldschmidt R. Fast chromatography of pulse triacylglycerols. J Am Oil Chem Soc. 2022;12665:1–19. https://doi.org/10.1002/aocs.12665.

    Article  CAS  Google Scholar 

  3. Ihaka R, Gentleman R. R: A Language for Data Analysis and Graphics. J Comput Graph Stat. 1996;5:299–314. https://doi.org/10.1080/10618600.1996.10474713.

    Article  Google Scholar 

  4. Steel GL, Sussman GJ. Scheme: an interpreter for the extended lambda calculus. Memo 349 MIT Artif Intell Lab. 1975;349. http://hdl.handle.net/1721.1/5794.

  5. Peng R. R programming for data science. 5th ed. Lulu.com; 2016.

  6. Bioconductor Advisory Board. 2002 annual report for the Bioconductor Project, DFCI. 2008. https://www.bioconductor.org/about/annual-reports/AnnRep2002.pdf.

  7. Gatto L, Lilley KS. MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics. 2012;28:288–9. https://doi.org/10.1093/bioinformatics/btr645.

    Article  CAS  PubMed  Google Scholar 

  8. Gatto L, Gibb S, Rainer J. MSnbase, Efficient and Elegant R-Based Processing and Visualization of Raw Mass Spectrometry Data. J Proteome Res. 2021;20:1063–9. https://doi.org/10.1021/acs.jproteome.0c00313.

    Article  CAS  PubMed  Google Scholar 

  9. Gatto L, Gibb S, Rainer J. MSnbase, efficient and elegant R-based processing and visualisation of raw mass spectrometry data. BioRxiv 2020:2020.04.29.067868. https://doi.org/10.1101/2020.04.29.067868.

  10. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78:779–87. https://doi.org/10.1021/ac051437y.

    Article  CAS  PubMed  Google Scholar 

  11. Tautenhahn R, Bottcher C, Neumann S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 2008;9. https://doi.org/10.1186/1471-2105-9-504.

  12. Benton HP, Want EJ, Ebbels TMD. Correction of mass calibration gaps in liquid chromatography-mass spectrometry metabolomics data. Bioinformatics. 2010;26:2488–9. https://doi.org/10.1093/bioinformatics/btq441.

    Article  CAS  PubMed  Google Scholar 

  13. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CRH, Shimizu T, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009;50:S9-14. https://doi.org/10.1194/jlr.R800095-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Folch J, Lees M, Sloane-Stanley GH. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J Biol Chem. 1957;226:497–509.

    Article  CAS  PubMed  Google Scholar 

  15. Byrdwell WC, Kotapati HK, Goldschmidt R, Jakubec P, Nováková L. Three-dimensional liquid chromatography with parallel second dimensions and quadruple parallel mass spectrometry for adult/infant formula analysis. J Chromatogr A. 2022;1661: 462682. https://doi.org/10.1016/j.chroma.2021.462682.

    Article  CAS  PubMed  Google Scholar 

  16. Byrdwell WC. Dual parallel mass spectrometry for lipid and vitamin D analysis. J Chromatogr A. 2010;1217:3992–4003. https://doi.org/10.1016/j.chroma.2009.11.101.

    Article  CAS  PubMed  Google Scholar 

  17. R Core Team. R: A language and environment for statistical computing. 2019. https://www.r-project.org/.

  18. Holman JD, Tabb DL, Mallick P. Employing ProteoWizard to convert raw mass spectrometry data. Curr Protoc Bioinforma. 2014. https://doi.org/10.1002/0471250953.bi1324s46.

    Article  Google Scholar 

  19. Libiseller G, Dvorzak M, Kleb U, Gander E, Eisenberg T, Madeo F, et al. IPO: A tool for automated optimization of XCMS parameters. BMC Bioinformatics 2015;16. https://doi.org/10.1186/s12859-015-0562-8.

  20. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the Tidyverse. J Open Source Softw 2019;4:1686. https://doi.org/10.21105/joss.01686.

  21. Rinker TW, Kurkiewicz D. pacman: Package Management for R. 2018. http://github.com/trinker/pacman.

  22. Chan C, Leeper TJ, Becker J, Schoch D. rio: A Swiss-army knife for data file I/O. 2023. https://cran.r-project.org/package=rio.

  23. Murdoch D, Adler D. rgl: 3D Visualization Using OpenGL. 2024. https://github.com/dmurdoch/rgl.

  24. Harrell Jr FE. Hmisc: Harrell Miscellaneous. 2024. https://cran.r-project.org/package=Hmisc.

  25. Han X, Gross RW. Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem. 2001;295:88–100. https://doi.org/10.1006/abio.2001.5178.

    Article  CAS  PubMed  Google Scholar 

  26. Prince JT, Marcotte EM. Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered bijective interpolated warping. Anal Chem. 2006;78:6140–52. https://doi.org/10.1021/ac0605344.

    Article  CAS  PubMed  Google Scholar 

  27. Deutsch EW. Mass spectrometer output file format mzML. Methods Mol Biol. 2010;604:319–31. https://doi.org/10.1007/978-1-60761-444-9_22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martens L, Chambers M, Sturm M, Kessner D, Levander F, Shofstahl J, et al. mzML - A community standard for mass spectrometry data. Mol Cell Proteomics 2011;10:R110.000133. https://doi.org/10.1074/mcp.R110.000133.

  29. Byrdwell WC. The bottom-up solution to the triacylglycerol lipidome using atmospheric pressure chemical ionization mass spectrometry. Lipids. 2005;40:383–417. https://doi.org/10.1007/s11745-006-1398-9.

    Article  CAS  PubMed  Google Scholar 

  30. Morgan M, Obenchain V, Hester J, Pagès H. SummarizedExperiment: SummarizedExperiment container 2023. https://doi.org/10.18129/B9.bioc.SummarizedExperiment.

Download references

Acknowledgements

The work of Dr. Robert Goldschmidt to extract bovine milk samples and conduct GC-FID and GC-MS analysis of samples is gratefully acknowledged.

Funding

All work was conducted using USDA, ARS base funds under projects 8040–10700-004–000-D and 5090–31000-027–000-D.

Author information

Authors and Affiliations

Authors

Contributions

W.C. Byrdwell: conceptualization, methodology, formal analysis, investigation, writing — original draft preparation, writing — review and editing, resources. K. Kalscheur: methodology, writing — review and editing, resources.

Corresponding author

Correspondence to Wm. Craig Byrdwell.

Ethics declarations

Ethics approval

All animal handling and care procedures were approved by the University of Wisconsin-Madison Institutional Animal Care and Use Committee (IACUC) using protocol #A005945.

Animal welfare

The present study followed international, national, and/or institutional guidelines for humane animal treatment and complied with relevant protocols from the University of Wisconsin-Madison Institutional Animal Care and Use Committee.

Source of biological material

Liquid milk samples were obtained by milking Holstein and Jersey cows in the research herd of the U.S. Dairy Forage Research Center, following IACUC protocols.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection New Trends in Lipidomics with guest editor Michal Holčapek.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byrdwell, W., Kalscheur, K.F. An interactive R-based custom quantification program for semi-quantitative analysis of triacylglycerols in bovine milk. Anal Bioanal Chem 416, 5527–5555 (2024). https://doi.org/10.1007/s00216-024-05528-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05528-x

Keywords

Navigation