Skip to main content
Log in

Strategic framework for harnessing luminescent metal nanocluster assemblies in biosensing applications

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The distinctive physicochemical attributes of ultra-small metal nanoclusters (MNCs) resembling those of molecules make them versatile constituents for self-assembled frameworks. This critical review scrutinizes the influence of assembly on the photoluminescence (PL) properties of MNCs and investigates their utility in biosensing applications. The investigation is initiated with an assessment of the shift from individual MNCs to assemblies and its repercussions on PL efficacy. Subsequently, two distinct biosensing modalities are explored: assembly-driven detection mechanisms and detection predicated on structural modifications in assembled MNCs. Through meticulous examination, we underscore the potential of self-assembly methodologies in tailoring the PL behavior of MNCs for the detection of diverse biological analytes and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev. 2017;117(12):8208–71.

    Article  CAS  PubMed  Google Scholar 

  2. Kang X, Li Y, Zhu M, Jin R. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem Soc Rev. 2020;49(17):6443–514.

    Article  PubMed  Google Scholar 

  3. Goswami N, Yao Q, Chen T, Xie J. Mechanistic exploration and controlled synthesis of precise thiolate-gold nanoclusters. Coord Chem Rev. 2016;329:1–15.

    Article  CAS  Google Scholar 

  4. Biswas S, Das AK, Nath A, Paul S, Suheshkumar Singh M, Mandal S. Novel class of water-soluble phosphonate silver cluster assembled material for efficient photoelectric sensing and photoacoustic imaging. Nanoscale. 2021;13(41):17325–30.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc. 2008;130(18):5883–5.

    Article  CAS  PubMed  Google Scholar 

  6. Rival JV, Mymoona P, Lakshmi KM, Nonappa, Pradeep T, Shibu ES. Self-assembly of precision noble metal nanoclusters: hierarchical structural complexity, colloidal superstructures, and applications. Small. 2021;17(27):2005718.

    Article  CAS  Google Scholar 

  7. Wu Z, Yao Q, Zang S, Xie J. Directed self-assembly of ultrasmall metal nanoclusters. ACS Mater Lett. 2019;1(2):237–48.

    Article  CAS  Google Scholar 

  8. Goswami N, Yao Q, Luo Z, Li J, Chen T, Xie J. Luminescent metal nanoclusters with aggregation-induced emission. J Phys Chem Lett. 2016;7(6):962–75.

    Article  CAS  PubMed  Google Scholar 

  9. Kang X, Zhu M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem Soc Rev. 2019;48(8):2422–57.

    Article  CAS  PubMed  Google Scholar 

  10. Bera D, Goswami N. Driving forces and routes for aggregation-induced emission-based highly luminescent metal nanocluster assembly. J Phys Chem Lett. 2021;12(37):9033–46.

    Article  CAS  PubMed  Google Scholar 

  11. Xiao Y, Wu Z, Yao Q, Xie J. Luminescent metal nanoclusters: biosensing strategies and bioimaging applications. Aggregate. 2021;2(1):114–32.

    Article  CAS  Google Scholar 

  12. Shang L, Dong S, Nienhaus GU. Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today. 2011;6(4):401–18.

    Article  CAS  Google Scholar 

  13. Krishna Kumar AS, Tseng W-L. Perspective on recent developments of near infrared-emitting gold nanoclusters: applications in sensing and bio-imaging. Anal Methods. 2020;12(14):1809–26.

    Article  CAS  Google Scholar 

  14. Shahsavari S, Hadian-Ghazvini S, Hooriabad Saboor F, Menbari Oskouie I, Hasany M, Simchi A, et al. Ligand functionalized copper nanoclusters for versatile applications in catalysis, sensing, bioimaging, and optoelectronics. Mater Chem Front. 2019;3(11):2326–56.

    Article  CAS  Google Scholar 

  15. Zheng J, Nicovich PR, Dickson RM. Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem. 2007;58:409–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang G, Guo R, Kalyuzhny G, Choi J-P, Murray RW. NIR luminescence intensities increase linearly with proportion of polar thiolate ligands in protecting monolayers of Au38 and Au140 quantum dots. J Phys Chem B. 2006;110(41):20282–9.

    Article  CAS  PubMed  Google Scholar 

  17. Lu Y, Chen W. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev. 2012;41(9):3594–623.

    Article  CAS  PubMed  Google Scholar 

  18. Porret E, Jourdan M, Gennaro B, Comby-Zerbino C, Bertorelle F, Trouillet V, et al. Influence of the spatial conformation of charged ligands on the optical properties of gold nanoclusters. J Phys Chem C. 2019;123(43):26705–17.

    Article  CAS  Google Scholar 

  19. Zheng J, Zhang C, Dickson RM. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett. 2004;93(7):077402.

    Article  PubMed  Google Scholar 

  20. Shibu ES, Muhammed MAH, Tsukuda T, Pradeep T. Ligand exchange of Au25SG18 leading to functionalized gold clusters: spectroscopy, kinetics, and luminescence. J Phys Chem C. 2008;112(32):12168–76.

    Article  CAS  Google Scholar 

  21. Kang X, Chong H, Zhu M. Au25(SR)18: the captain of the great nanocluster ship. Nanoscale. 2018;10(23):10758–834.

    Article  CAS  PubMed  Google Scholar 

  22. Wu Z, Jin R. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010;10(7):2568–73.

    Article  CAS  PubMed  Google Scholar 

  23. Chen Y, Yang T, Pan H, Yuan Y, Chen L, Liu M, et al. Photoemission mechanism of water-soluble silver nanoclusters: ligand-to-metal–metal charge transfer vs strong coupling between surface plasmon and emitters. J Am Chem Soc. 2014;136(5):1686–9.

    Article  CAS  PubMed  Google Scholar 

  24. Bain D, Maity S, Patra A. Surface motifs regulated aggregation induced emission in gold–silver nanoclusters. Chem Commun. 2020;56(65):9292–5.

    Article  CAS  Google Scholar 

  25. Yun CS, Javier A, Jennings T, Fisher M, Hira S, Peterson S, et al. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J Am Chem Soc. 2005;127(9):3115–9.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang X, Hu Y, Yang X, Tang Y, Han S, Kang A, et al. Förster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens Bioelectron. 2019;138:111314.

    Article  CAS  PubMed  Google Scholar 

  27. Wu L, Huang C, Emery BP, Sedgwick AC, Bull SD, He X-P, et al. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem Soc Rev. 2020;49(15):5110–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luo Z, Yuan X, Yu Y, Zhang Q, Leong DT, Lee JY, et al. From aggregation-induced emission of Au(I)–thiolate complexes to ultrabright Au(0)@Au(I)–thiolate core–shell nanoclusters. J Am Chem Soc. 2012;134(40):16662–70.

    Article  CAS  PubMed  Google Scholar 

  29. Liu X, Hu R, Gao Z, Shao N. Photoluminescence mechanism of DNA-templated silver nanoclusters: coupling between surface plasmon and emitter and sensing of lysozyme. Langmuir. 2015;31(21):5859–67.

    Article  CAS  PubMed  Google Scholar 

  30. Wu Z, Yao Q, Chai OJH, Ding N, Xu W, Zang S, et al. Unraveling the impact of gold(I)–thiolate motifs on the aggregation-induced emission of gold nanoclusters. Angew Chem Int Ed. 2020;59(25):9934–9.

    Article  CAS  Google Scholar 

  31. Negishi Y, Nobusada K, Tsukuda T. Glutathione-protected gold clusters revisited: bridging the gap between gold(I)−thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc. 2005;127(14):5261–70.

    Article  CAS  PubMed  Google Scholar 

  32. Yahia-Ammar A, Sierra D, Mérola F, Hildebrandt N, Le Guével X. Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano. 2016;10(2):2591–9.

    Article  CAS  PubMed  Google Scholar 

  33. Goswami N, Lin F, Liu Y, Leong DT, Xie J. Highly luminescent thiolated gold nanoclusters impregnated in nanogel. Chem Mater. 2016;28(11):4009–16.

    Article  CAS  Google Scholar 

  34. Xie J, Zheng Y, Ying JY. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem Commun. 2010;46(6):961–3.

    Article  CAS  Google Scholar 

  35. Dou X, Yuan X, Yu Y, Luo Z, Yao Q, Leong DT, et al. Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale. 2014;6(1):157–61.

    Article  CAS  PubMed  Google Scholar 

  36. Tang C, Feng H, Huang Y, Qian Z. Reversible luminescent nanoswitches based on aggregation-induced emission enhancement of silver nanoclusters for luminescence turn-on assay of inorganic pyrophosphatase activity. Anal Chem. 2017;89(9):4994–5002.

    Article  CAS  PubMed  Google Scholar 

  37. Li B, Wang X, Shen X, Zhu W, Xu L, Zhou X. Aggregation-induced emission from gold nanoclusters for use as a luminescence-enhanced nanosensor to detect trace amounts of silver ions. J Colloid Interface Sci. 2016;467:90–6.

    Article  CAS  PubMed  Google Scholar 

  38. Shamsipur M, Molaei K, Molaabasi F, Hosseinkhani S, Taherpour A, Sarparast M, et al. Aptamer-based fluorescent biosensing of adenosine triphosphate and cytochrome c via aggregation-induced emission enhancement on novel label-free DNA-capped silver nanoclusters/graphene oxide nanohybrids. ACS Appl Mater Interfaces. 2019;11(49):46077–89.

    Article  CAS  PubMed  Google Scholar 

  39. Mahato P, Shekhar S, Agrawal S, Pramanik S, Mukherjee S. Assembly-induced emission in mercaptosuccinic acid-templated silver nanoclusters: metal ion selectivity and ph sensitivity. ACS Appl Nano Mater. 2022;5(5):7571–9.

    Article  CAS  Google Scholar 

  40. Li W, Wen X, Zhao H, Yan W, Trant JF, Li Y. Acid-triggered self-assembled egg white protein-coated gold nanoclusters for selective fluorescent detection of Fe3+, NO2–, and cysteine. ACS Appl Nano Mater. 2020;3(12):11838–49.

    Article  CAS  Google Scholar 

  41. Feng J, Chen Y, Han Y, Liu J, Ma S, Zhang H, et al. pH-regulated synthesis of trypsin-templated copper nanoclusters with blue and yellow fluorescent emission. ACS Omega. 2017;2(12):9109–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mo Q, Liu F, Gao J, Zhao M, Shao N. Fluorescent sensing of ascorbic acid based on iodine induced oxidative etching and aggregation of lysozyme-templated silver nanoclusters. Anal Chim Acta. 2018;1003:49–55.

    Article  CAS  PubMed  Google Scholar 

  43. Yuan X, Tay Y, Dou X, Luo Z, Leong DT, Xie J. Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. Anal Chem. 2013;85(3):1913–9.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Cai Y, Qi Z, Lu L, Qian Y. DNA-templated silver nanoclusters for fluorescence turn-on assay of acetylcholinesterase activity. Anal Chem. 2013;85(17):8455–61.

    Article  CAS  PubMed  Google Scholar 

  45. Jiang H, Su X, Zhang Y, Zhou J, Fang D, Wang X. Unexpected thiols triggering photoluminescent enhancement of cytidine stabilized Au nanoclusters for sensitive assays of glutathione reductase and its inhibitors screening. Anal Chem. 2016;88(9):4766–71.

    Article  CAS  PubMed  Google Scholar 

  46. Pandya A, Lad AN, Singh SP, Shanker R. DNA assembled metal nanoclusters: synthesis to novel applications. RSC Adv. 2016;6(114):113095–114.

    Article  CAS  Google Scholar 

  47. Chen Y, Phipps ML, Werner JH, Chakraborty S, Martinez JS. DNA Templated metal nanoclusters: from emergent properties to unique applications. Acc Chem Res. 2018;51(11):2756–63.

    Article  CAS  PubMed  Google Scholar 

  48. Niu X, Suo Z, Li J, Wei M, Jin H, He B. Self-assembled programmable DNA nanoflower for in situ synthesis of gold nanoclusters and integration with Mn-MOF to sensitively detect AFB1. Chem Eng J. 2024;479:147806.

    Article  CAS  Google Scholar 

  49. Yu F, Cao Z, He S, Xiang H, Zhao G, Yang L, et al. Highly luminescent gold nanocluster assemblies for bioimaging in living organisms. Chem Commun. 2022;58(6):811–4.

    Article  CAS  Google Scholar 

  50. Ran X, Wang Z, Pu F, Liu Z, Ren J, Qu X. Aggregation-induced emission-active Au nanoclusters for ratiometric sensing and bioimaging of highly reactive oxygen species. Chem Commun. 2019;55(100):15097–100.

    Article  CAS  Google Scholar 

  51. Zhu X, Liu L, Cao W, Yuan R, Wang H. Ultra-sensitive microRNA biosensor based on strong aggregation-induced electrochemiluminescence from bidentate ligand-stabilized copper nanoclusters in polymer hydrogel. Anal Chem. 2023;95(13):5553–60.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou X, Huang S, Zhang D, Liu W, Gao W, Xue Y, et al. Gold Nanocluster-based fluorescent microneedle platform toward visual detection of ATP. Anal Chem. 2023;95(32):12104–12.

    Article  CAS  PubMed  Google Scholar 

  53. Nie Y, Tao X, Zhang H, Chai Y-Q, Yuan R. Self-assembly of gold nanoclusters into a metal–organic framework with efficient electrochemiluminescence and their application for sensitive detection of Rutin. Anal Chem. 2021;93(7):3445–51.

    Article  CAS  PubMed  Google Scholar 

  54. Ma F, Li W, Wang P, Ma Q. Nanocluster/metal-organic framework nanosheet-based confined ECL enhancement biosensor for the extracellular vesicle detection. Anal Chim Acta. 2024;1301:342488.

    Article  CAS  PubMed  Google Scholar 

  55. Li Q, Zhou X, Tan L-L, Shang L. MOF-based surface tailoring the near-infrared luminescence property of gold nanoclusters for ratiometric fluorescence sensing of acetylcholinesterase. Sens Actuators B Chem. 2023;385:133695.

    Article  CAS  Google Scholar 

  56. You J-G, Lu C-Y, Krishna Kumar AS, Tseng W-L. Cerium(III)-directed assembly of glutathione-capped gold nanoclusters for sensing and imaging of alkaline phosphatase-mediated hydrolysis of adenosine triphosphate. Nanoscale. 2018;10(37):17691–8.

    Article  CAS  PubMed  Google Scholar 

  57. Zhuang Q, Zeng C, Mu Y, Zhang T, Yi G, Wang Y. Lead(II)-triggered aggregation-induced emission enhancement of adenosine-stabilized gold nanoclusters for enhancing photoluminescence detection of nabam—disodium ethylenebis(dithiocarbamate). Chem Eng J. 2023;470:144113.

    Article  CAS  Google Scholar 

  58. Li X, Zhang X, Cao H, Huang Y, Feng P. Tb3+ tuning AIE self-assembly of copper nanoclusters for sensitively sensing trace fluoride ions. Sens Actuators B Chem. 2021;342:130071.

    Article  CAS  Google Scholar 

  59. Huang Y, Feng H, Liu W, Zhang S, Tang C, Chen J, et al. Cation-driven luminescent self-assembled dots of copper nanoclusters with aggregation-induced emission for β-galactosidase activity monitoring. J Mater Chem B. 2017;5(26):5120–7.

    Article  CAS  PubMed  Google Scholar 

  60. Pan S, Liu W, Tang J, Yang Y, Feng H, Qian Z, et al. Hydrophobicity-guided self-assembled particles of silver nanoclusters with aggregation-induced emission and their use in sensing and bioimaging. J Mater Chem B. 2018;6(23):3927–33.

    Article  CAS  PubMed  Google Scholar 

  61. Porret E, Sancey L, Martín-Serrano A, Montañez MI, Seeman R, Yahia-Ammar A, et al. Hydrophobicity of gold nanoclusters influences their interactions with biological barriers. Chem Mater. 2017;29(17):7497–506.

    Article  CAS  Google Scholar 

  62. Nag A, Chakraborty P, Thacharon A, Paramasivam G, Mondal B, Bodiuzzaman M, et al. Atomically precise noble metal cluster-assembled superstructures in water: luminescence enhancement and sensing. J Phys Chem C. 2020;124(40):22298–303.

    Article  CAS  Google Scholar 

  63. Zhou X, Wang X, Shang L. Ratiometric fluorescence and visual sensing of ATP based on gold nanocluster-encapsulated metal-organic framework with a smartphone. Chin Chem Lett. 2023;34(8):108093.

    Article  CAS  Google Scholar 

  64. Miao Z, Hou W, Liu M, Zhang Y, Yao S. BSA capped bi-functional fluorescent Cu nanoclusters as pH sensor and selective detection of dopamine. New J Chem. 2018;42(2):1446–56.

    Article  CAS  Google Scholar 

  65. Han A, Xiong L, Hao S, Yang Y, Li X, Fang G, et al. Highly bright self-assembled copper nanoclusters: a novel photoluminescent probe for sensitive detection of histamine. Anal Chem. 2018;90(15):9060–7.

    Article  CAS  PubMed  Google Scholar 

  66. Ma L, Zhang M, Yang A, Wang Q, Qu F, Qu F, et al. Sensitive fluorescence detection of heparin based on self-assembly of mesoporous silica nanoparticle–gold nanoclusters with emission enhancement characteristics. Analyst. 2018;143(22):5388–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AM, SRS, and SM would like to thank the University Grants Commission (UGC), India, for providing fellowship. We also acknowledge the CSIR-Institute of Minerals & Materials Technology (CSIR-IMMT), Bhubaneswar, for in-house financial support.

Funding

This work was supported by in-house grant from CSIR-Institute of Minerals & Materials Technology (CSIR-IMMT), Bhubaneswar (No.-OLP-110).

Author information

Authors and Affiliations

Authors

Contributions

Arun Mukhopadhyay, and Satya Ranjan Sahoo: Formal analysis, writing of original draft. Sukhendu Mahata: Formal analysis. Nirmal Goswami: Funding acquisition, supervision, writing, review and editing.

Corresponding author

Correspondence to Nirmal Goswami.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Luminescent Nanomaterials for Biosensing and Bioimaging with guest editors Li Shang, Chih-Ching Huang, and Xavier Le Guével.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, A., Sahoo, S.R., Mahata, S. et al. Strategic framework for harnessing luminescent metal nanocluster assemblies in biosensing applications. Anal Bioanal Chem 416, 3963–3974 (2024). https://doi.org/10.1007/s00216-024-05353-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05353-2

Keywords

Navigation