Skip to main content
Log in

On the utility of ultrafast MS1-only proteomics in drug target discovery studies based on thermal proteome profiling method

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Advances in high-throughput high-resolution mass spectrometry and the development of thermal proteome profiling approach (TPP) have made it possible to accelerate a drug target search. Since its introduction in 2014, TPP quickly became a method of choice in chemical proteomics for identifying drug-to-protein interactions on a proteome-wide scale and mapping the pathways of these interactions, thus further elucidating the unknown mechanisms of action of a drug under study. However, the current TPP implementations based on tandem mass spectrometry (MS/MS), associated with employing lengthy peptide separation protocols and expensive labeling techniques for sample multiplexing, limit the scaling of this approach for the ever growing variety of drug-to-proteomes. A variety of ultrafast proteomics methods have been developed in the last couple of years. Among them, DirectMS1 provides MS/MS-free quantitative proteome-wide analysis in 5-min time scale, thus opening the way for sample-hungry applications, such as TPP. In this work, we demonstrate the first implementation of the TPP approach using the ultrafast proteome-wide analysis based on DirectMS1. Using a drug topotecan, which is a known topoisomerase I (TOP1) inhibitor, the feasibility of the method for identifying drug targets at the whole proteome level was demonstrated for an ovarian cancer cell line.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537:347–55. https://doi.org/10.1038/nature19949.

    Article  CAS  PubMed  Google Scholar 

  2. Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A, Szymborska A, et al. The quantitative proteome of a human cell line. Mol Syst Biol. 2011;7:549. https://doi.org/10.1038/msb.2011.82.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Saei AA, Sabatier P, Tokat ÜG, Chernobrovkin A, Pirmoradian M, Zubarev RA. Comparative proteomics of dying and surviving cancer cells improves the identification of drug targets and sheds light on cell life/death decisions. Mol Cell Proteomics MCP. 2018;17:1144–55. https://doi.org/10.1074/mcp.RA118.000610.

    Article  CAS  PubMed  Google Scholar 

  4. Gaetani M, Sabatier P, Saei AA, Beusch CM, Yang Z, Lundström SL, et al. Proteome integral solubility alteration: a high-throughput proteomics assay for target deconvolution. J Proteome Res. 2019;18:4027–37. https://doi.org/10.1021/acs.jproteome.9b00500.

    Article  CAS  PubMed  Google Scholar 

  5. Savitski MM, Reinhard FBM, Franken H, Werner T, Savitski MF, Eberhard D, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science. 2014;346:1255784. https://doi.org/10.1126/science.1255784.

    Article  CAS  PubMed  Google Scholar 

  6. Mateus A, Kurzawa N, Perrin J, Bergamini G, Savitski MM. Drug target identification in tissues by thermal proteome profiling. Annu Rev Pharmacol Toxicol. 2022;62:465–82. https://doi.org/10.1146/annurev-pharmtox-052120-013205.

    Article  CAS  PubMed  Google Scholar 

  7. Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341:84–7. https://doi.org/10.1126/science.1233606.

    Article  CAS  PubMed  Google Scholar 

  8. Werner T, Becher I, Sweetman G, Doce C, Savitski MM, Bantscheff M. High-resolution enabled TMT 8-plexing. Anal Chem. 2012;84:7188–94. https://doi.org/10.1021/ac301553x.

    Article  CAS  PubMed  Google Scholar 

  9. Werner T, Sweetman G, Savitski MF, Mathieson T, Bantscheff M, Savitski MM. Ion coalescence of neutron encoded TMT 10-plex reporter ions. Anal Chem. 2014;86:3594–601. https://doi.org/10.1021/ac500140s.

    Article  CAS  PubMed  Google Scholar 

  10. Sauer P, Bantscheff M. Thermal proteome profiling for drug target identification and probing of protein states. In: Gevaert, K. (eds) Mass spectrometry-based proteomics. Methods in Molecular Biology. 2023. https://doi.org/10.1007/978-1-0716-3457-8_5.

  11. George AL, Sidgwick FR, Watt JE, Martin MP, Trost M, Marín-Rubio JL, et al. Comparison of quantitative mass spectrometric methods for drug target identification by thermal proteome profiling. J Proteome Res. 2023. https://doi.org/10.1021/acs.jproteome.3c00111.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ivanov MV, Bubis JA, Gorshkov V, Abdrakhimov DA, Kjeldsen F, Gorshkov MV. Boosting MS1-only proteomics with machine learning allows 2000 protein identifications in single-shot human proteome analysis using 5 min HPLC Gradient. J Proteome Res. 2021;20:1864–73. https://doi.org/10.1021/acs.jproteome.0c00863.

    Article  CAS  PubMed  Google Scholar 

  13. Ivanov MV, Bubis JA, Gorshkov V, Tarasova IA, Levitsky LI, Solovyeva EM, et al. DirectMS1Quant: ultrafast quantitative proteomics with MS/MS-free mass spectrometry. Anal Chem. 2022;94:13068–75. https://doi.org/10.1021/acs.analchem.2c02255.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Y, Zhao HY, Jiang D, Wang LY, Xiang C, Wen SP, et al. Low toxic and high soluble camptothecin derivative 2–47 effectively induces apoptosis of tumor cells in vitro. Biochem Biophys Res Commun. 2016;472:477–81. https://doi.org/10.1016/j.bbrc.2016.02.015.

    Article  CAS  PubMed  Google Scholar 

  15. Kazakova EM, Solovyeva EM, Levitsky LI, Bubis JA, Emekeeva DD, Antonets AA, et al. Proteomics-based scoring of cellular response to stimuli for improved characterization of signaling pathway activity. Proteomics. 2023;23:e2200275. https://doi.org/10.1002/pmic.202200275.

    Article  CAS  PubMed  Google Scholar 

  16. Hulstaert N, Shofstahl J, Sachsenberg T, Walzer M, Barsnes H, Martens L, et al. ThermoRawFileParser: modular, scalable, and cross-platform RAW file conversion. J Proteome Res. 2020;19:537–42. https://doi.org/10.1021/acs.jproteome.9b00328.

    Article  CAS  PubMed  Google Scholar 

  17. Levitsky LI, Ivanov MV, Lobas AA, Gorshkov MV. Unbiased false discovery rate estimation for shotgun proteomics based on the target-decoy approach. J Proteome Res. 2017;16:393–7. https://doi.org/10.1021/acs.jproteome.6b00144.

    Article  CAS  PubMed  Google Scholar 

  18. Franken H, Mathieson T, Childs D, Sweetman GMA, Werner T, Tögel I, et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat Protoc. 2015;10:1567–93. https://doi.org/10.1038/nprot.2015.101.

    Article  CAS  PubMed  Google Scholar 

  19. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9. https://doi.org/10.1038/75556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pourquier P, Lansiaux A. Molecular determinants of response to topoisomerase I inhibitors. Bull Cancer (Paris). 2011;98:1287–98. https://doi.org/10.1684/bdc.2011.1474.

    Article  CAS  PubMed  Google Scholar 

  21. Thomas A, Pommier Y. Topoisomerase I in the Era of Precision Medicine. Clin Cancer Res. 2019;25:6581–9. https://doi.org/10.1158/1078-0432.CCR-19-1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li TK, Liu LF. Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol. 2001;41:53–77. https://doi.org/10.1146/annurev.pharmtox.41.1.53.

    Article  PubMed  Google Scholar 

  23. Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB Jr, Stewart L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci USA. 2002;99(24):15387–92. https://doi.org/10.1073/pnas.242259599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hertzberg RP, Caranfa MJ, Hecht SM. On the mechanism of topoisomerase I inhibition by camptothecin: evidence for binding to an enzyme-DNA complex. Biochemistry. 1989;28(11):4629–38. https://doi.org/10.1021/bi00437a018.

    Article  CAS  PubMed  Google Scholar 

  25. Trask DK, Muller MT. Stabilization of type I topoisomerase-DNA covalent complexes by actinomycin D. Proc Natl Acad Sci USA. 1988;85(5):1417–21. https://doi.org/10.1073/pnas.85.5.1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Russian Science Foundation (grant № 20–14-00229-P).

Author information

Authors and Affiliations

Authors

Contributions

Ivan I. Fedorov: data curation; formal analysis; visualization; writing, original draft preparation; writing, review and editing. Julia A. Bubis: methodology, investigation, laboratory work. Elizaveta M. Kazakova: investigation, laboratory work, data curation. Anna A. Lobas: methodology. Mark V. Ivanov: software, resources. Daria D. Emekeeva: investigation, laboratory work. Irina A. Tarasova: resources, formal analysis, supervision. Alexey A. Nazarov: investigation, laboratory work. Mikhail V. Gorshkov: conceptualization, supervision, funding acquisition, project administration, writing—review and editing. All authors discussed the results and commented on the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Mikhail V. Gorshkov.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1153 KB)

Supplementary file2 (XLSX 1545 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, I.I., Bubis, J.A., Kazakova, E.M. et al. On the utility of ultrafast MS1-only proteomics in drug target discovery studies based on thermal proteome profiling method. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05330-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05330-9

Keywords

Navigation