Skip to main content
Log in

Position-specific carbon stable isotope analysis of glyphosate: isotope fingerprinting of molecules within a mixture

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript
  • 2 Altmetric

Abstract

Glyphosate [N-(phosphonomethyl) glycine] is a widely used herbicide and a molecule of interest in the environmental sciences, due to its global use in agriculture and its potential impact on ecosystems. This study presents the first position-specific carbon isotope (13C/12C) analyses of glyphosates from multiple sources. In contrast to traditional isotope ratio mass spectrometry (IRMS), position-specific analysis provides 13C/12C ratios at individual carbon atom positions within a molecule, rather than an average carbon isotope ratio across a mixture or a specific compound. In this work, glyphosate in commercial herbicides was analyzed with only minimal purification, using a nuclear magnetic resonance (NMR) spectroscopy method that detects 1H nuclei with bonds to either 13C or 12C, and isolates the signals of interest from other signals in the mixture. Results demonstrate that glyphosate from different sources can have significantly different intramolecular 13C/12C distributions, which were found to be spread over a wide range, with δ13C Vienna Peedee Belemnite (VPDB) values of −28.7 to −57.9‰. In each glyphosate, the carbon with a bond to the phosphorus atom was found to be depleted in 13C compared to the carbon at the C2 position, by 4 to 10‰. Aminomethylphosphonic acid (AMPA) was analyzed for method validation; AMPA contains only a single carbon position, so the 13C/12C results provided by the NMR method could be directly compared with traditional isotope ratio mass spectrometry. The glyphosate mixtures were also analyzed by IRMS to obtain their average 13C/12C ratios, for comparison with our position-specific results. This comparison revealed that the IRMS results significantly disguise the intramolecular isotope distribution. Finally, we introduce a 31P NMR method that can provide a position-specific 13C/12C ratio for carbon positions with a C-P chemical bond, and the results obtained by 1H and 31P for C3 carbon agree with one another within their analytical uncertainty. These analytical tools for position-specific carbon isotope analysis permit the isotopic fingerprinting of target molecules within a mixture, with potential applications in a range of fields, including the environmental sciences and chemical forensics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

In addition, raw NMR data and R-scripts for processing the data are available at the Texas Data Repository at: https://doi.org/10.18738/T8/HLYCSP.

References

  1. Slater GF. Stable isotope forensics - when isotopes work. Env Forensics. 2003;4:13–23.

    Article  CAS  Google Scholar 

  2. Schmidt TC, Jochmann MA. Origin and fate of organic compounds in water: characterization by compound-specific stable isotope analysis. Annual Rev Anal Chem. 2012;5:133–55.

    Article  CAS  Google Scholar 

  3. Braeckevelt M, Fischer A, Kästner M. Field applicability of compound-specific isotope analysis (CSIA) for characterization and quantification of in situ contaminant degradation in aquifers. Appl Microbiol Biotech. 2012;94:1401–21.

    Article  CAS  Google Scholar 

  4. Cerling TE. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Plan Sci Lett. 1984;71:229–40.

    Article  CAS  Google Scholar 

  5. Schidlowski M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precam Res. 2001;106:117–34.

    Article  CAS  Google Scholar 

  6. Penger J, Conrad R, Blaser M. Stable carbon isotope fractionation by methylotrophic methanogenic Archaea. Appl Envir Microbio. 2012;78:7596–602.

    Article  CAS  Google Scholar 

  7. Gentile N, Siegwolf RT, Esseiva P, Doyle S, Zollinger K, Delemont O. Isotope ratio mass spectrometry as a tool for source inference in forensic science: a critical review. Forensic Sci Int. 2015;251:139–58.

    Article  CAS  PubMed  Google Scholar 

  8. Aguilera R, Chapman TE, Starcevic B, Hatton CK, Catlin DH. Performance characteristics of a carbon isotope ratio method for detecting doping with testosterone based on urine diols: controls and athletes with elevated testosterone/epitestosterone ratios. Clin Chem. 2001;47:292–300.

    Article  CAS  PubMed  Google Scholar 

  9. Lamprecht G, Pichlmayer F, Schmid ER. Determination of the authenticity of vanilla extracts by stable isotope ratio analysis and component analysis by HPLC. J Agricu Food Chem. 1994;42:1722–7.

    Article  CAS  Google Scholar 

  10. Le PM, Martineau E, Akoka S, Remaud G, Chartrand MM, Meija J, Mester Z. Site-specific carbon isotope measurements of vanillin reference materials by nuclear magnetic resonance spectrometry. Anal Bioanal Chem. 2022;414:7153–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kennett DJ, Prufer KM, Culleton BJ, George RJ, Robinson M, Trask WR, Buckley GM, Moes E, Kate EJ, Harper TK, O’Donnell L. Early isotopic evidence for maize as a staple grain in the Americas. Sci Advances. 2020;6:eaba3245.

    Article  CAS  Google Scholar 

  12. Matthews DE, Hayes JM. Isotope-ratio-monitoring gas chromatography-mass spectrometry. Anal Chem. 1978;50:1465–73.

    Article  CAS  Google Scholar 

  13. Brenna JT. Natural intramolecular isotope measurements in physiology: elements of the case for an effort toward high-precision position-specific isotope analysis. Rapid Com Mass Spec. 2001;15:1252–62.

    Article  CAS  Google Scholar 

  14. Sacks GL, Brenna JT. High-precision position-specific isotope analysis of 13C/12C in leucine and methionine analogues. Anal Chem. 2003;75:5495–503.

    Article  CAS  PubMed  Google Scholar 

  15. Savidge WB, Blair NE. Seasonal and within-plant gradients in the intramolecular carbon isotopic composition of amino acids of Spartina alterniflora. J Exp Marine Biol Ecol. 2004;308:151–67.

    Article  CAS  Google Scholar 

  16. Dunn PJ, Honch NV, Evershed RP. Comparison of liquid chromatography - isotope ratio mass spectrometry (LC/IRMS) and gas chromatography–combustion–isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid δ13C values for palaeodietary and palaeoecological reconstruction. Rapid Com Mass Spec. 2011;25:2995–3011.

    Article  CAS  Google Scholar 

  17. Tea I, Tcherkez G. Natural isotope abundance in metabolites: techniques and kinetic isotope effect measurement in plant, animal, and human tissues. In Meth Enzym. 2017;596:113–47.

    Article  CAS  Google Scholar 

  18. Gauchotte-Lindsay C, Turnbull SM. On-line high-precision carbon position-specific stable isotope analysis: a review. TrAC Trends Anal Chem. 2016;76:115–25.

    Article  CAS  Google Scholar 

  19. Neubauer C, Sweredoski MJ, Moradian A, Newman DK, Robins RJ, Eiler JM. Scanning the isotopic structure of molecules by tandem mass spectrometry. Int J Mass Spec. 2018;434:276–86.

    Article  CAS  Google Scholar 

  20. Wilkes EB, Sessions AL, Zeichner SS, Dallas B, Schubert B, Jahren AH, Eiler JM. Position-specific carbon isotope analysis of serine by gas chromatography/Orbitrap mass spectrometry, and an application to plant metabolism. Rapid Com Mass Spec. 2022;36: e9347.

    Article  CAS  Google Scholar 

  21. Chimiak L, Elsila JE, Dallas B, Dworkin JP, Aponte JC, Sessions AL, Eiler JM. Carbon isotope evidence for the substrates and mechanisms of prebiotic synthesis in the early solar system. Geochim Cosmochim Acta. 2021;292:188–202.

    Article  CAS  Google Scholar 

  22. Fry B, Carter JF, Yamada K, Yoshida N. Position specific 13C/12C analysis of amino acid carboxyl groups - automated flow injection analysis based on reaction with ninhydrin. Rapid Commun Mass Spectrom. 2018;32:992–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gilbert A, Silvestre V, Robins RJ, Remaud GS. Accurate quantitative isotopic 13C NMR spectroscopy for the determination of the intramolecular distribution of 13C in glucose at natural abundance. Anal Chem. 2009;81:8978–85.

    Article  CAS  PubMed  Google Scholar 

  24. Romek KM, Krzemińska A, Remaud GS, Julien M, Paneth P, Robins RJ. Insights into the role of methionine synthase in the universal 13C depletion in O-and N-methyl groups of natural products. Arch Biochem Biophy. 2017;635:60–5.

    Article  CAS  Google Scholar 

  25. Fox AC, Martineau E, Remaud GS, Freeman KH. Position-specific isotope fractionation in amino acids sorbed to ice: Implications for the preservation of isotopologue biosignatures. Geochim Cosmochim Acta. 2021;309:45–56.

    Article  CAS  Google Scholar 

  26. Rasmussen C, Hoffman DW. Intramolecular distribution of 13C/12C isotopes in amino acids of diverse origins. Amino Acids. 2020;52:955–64.

    Article  CAS  PubMed  Google Scholar 

  27. Rasmussen C, Hoffman DW. Novel nuclear magnetic resonance method for position-specific carbon isotope analysis of organic molecules with significant impurities. Anal Chem. 2022;94:15124–31.

    Article  CAS  PubMed  Google Scholar 

  28. Hoffman DW, Rasmussen C. Position-specific carbon stable isotope ratios by proton NMR spectroscopy. Anal Chem. 2019;91:15661–9.

    Article  CAS  PubMed  Google Scholar 

  29. Hoffman DW, Rasmussen C. Absolute carbon stable isotope ratio in the Vienna Peedee Belemnite isotope reference determined by 1H NMR spectroscopy. Anal Chem. 2022;94:5240–7.

    Article  CAS  PubMed  Google Scholar 

  30. Kujawinski DM, Wolbert JB, Zhang L, Jochmann MA, Widory D, Baran N, Schmidt TC. Carbon isotope ratio measurements of glyphosate and AMPA by liquid chromatography coupled to isotope ratio mass spectrometry. Anal Bioanal Chem. 2013;405:2869–78.

    Article  CAS  PubMed  Google Scholar 

  31. Mogusu EO, Wolbert JB, Kujawinski DM, Jochmann MA, Elsner M. Dual element (15N/14N, 13C/12C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS. Anal Bioanal Chem. 2015;407:5249–60.

    Article  CAS  PubMed  Google Scholar 

  32. Shaka AJ, Keeler J, Frenkiel T, Freeman RAY. An improved sequence for broadband decoupling: WALTZ-16. J Magn Reason. 1983;52:335–8.

    CAS  Google Scholar 

  33. Willcott MR. MestReNova. J Am Chem Soc. 2009;131:13180–13180.

    Article  CAS  Google Scholar 

  34. Tiainen M, Maaheimo H, Soininen P, Laatikainen R. 13C isotope effects on 1H chemical shifts: NMR spectral analysis of 13C-labelled d-glucose and some 13C-labelled amino acids. Magn Reson Chem. 2010;48:117–22.

    Article  CAS  PubMed  Google Scholar 

  35. Malinovsky D, Dunn PJH, Holcombe G, Cowen S, Goenaga-Infante H. Development and characterisation of new glycine certified reference materials for SI-traceable 13C/12C isotope amount ratio measurements. J Anal At Spectrom. 2019;34:147–59.

    Article  CAS  Google Scholar 

  36. Revesz K, Qi H, Coplan TB. Determination of the δ15N and δ13C of total nitrogen and carbon in solids. In: Stable-Isotope Ratio Methods, Methods of the Reston Stable Isotope Laboratory: US Geological Survey, Revesz and Coplen eds., book 10, chap. 5. 2006.

  37. Coplen TB, Brand WA, Gehre M, Gröning M, Meijer HAJ, Toman B, Verkouteren RM. New guidelines for delta 13C measurements: Anal. Chem. 2006;78:2439–41.

    CAS  Google Scholar 

  38. Abelson PH, Hoering T. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proceed Nat Ac Sci. 1961;47:623–32.

    Article  CAS  Google Scholar 

  39. Holtvoeth J, Whiteside JH, Engels S, Freitas FS, Grice K, Greenwood P, Johnson S, Kendall I, Lengger SK, Lücke A, Mayr C. The paleolimnologist’s guide to compound-specific stable isotope analysis - an introduction to principles and applications of CSIA for Quaternary lake sediments. Quat Sci Rev. 2019;207:101–33.

    Article  Google Scholar 

  40. Yushchenkoa DY, Khlebnikovaa TB, Paia ZP, Bukhtiyarov VI. Glyphosate: methods of synthesis. Kin Catal. 2021;62:331–41.

    Article  Google Scholar 

  41. Bernard BB, Brooks JM, Sackett WM. Natural gas seepage in the Gulf of Mexico. Earth Plan Sci Lett. 1976;31:48–54.

    Article  CAS  Google Scholar 

  42. Yang S, Lan X, Talbot R, Liu L. Characterizing anthropogenic methane sources in the Houston and Barnett Shale areas of Texas using the isotopic signature δ13C in CH4. Sci Total Env. 2019;2019(696):133856.

    Article  Google Scholar 

  43. Schwietzke S, Sherwood OA, Bruhwiler LM, Miller JB, Etiope G, Dlugokencky EJ, Michel SE, Arling VA, Vaughn BH, White JW, Tans PP. Upward revision of global fossil fuel methane emissions based on isotope database. Nature. 2016;538:88–91.

    Article  CAS  PubMed  Google Scholar 

  44. Ogbesejana AB, Liu B, Ostadhassan M. Stable isotope geochemistry of the organic elements within shales and crude oils: a comprehensive review. Molecules. 2021;27:34.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Milkov AV, Schwietzke S, Allen G, Sherwood OA, Etiope G. Using global isotopic data to constrain the role of shale gas production in recent increases in atmospheric methane. Sci Rep. 2020;10:4199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Limon AW, Moingt M, Widory D. The carbon stable isotope compositions of glyphosate and aminomethylphosphonic acid (AMPA): improved analytical sensitivity and first application to environmental water matrices. Rapid Com Mass Spec. 2021;35:e9017.

    Article  CAS  Google Scholar 

  47. Kudzin MH, Żyłła R, Mrozińska Z, Urbaniak P. 31P NMR investigations on roundup degradation by AOP procedures. Water. 2019;11:331–47.

    Article  CAS  Google Scholar 

  48. Cartigny B, Azaroual N, Imbenotte M, Mathieu D, Vermeersch G, Goullé JP, Lhermitte M. Determination of glyphosate in biological fluids by 1H and 31P NMR spectroscopy. Forensic Sci Int. 2004;143:141–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by a Department of Energy Basic Energy Sciences research grant DE-SC0022524.

Author information

Authors and Affiliations

Authors

Contributions

D.H. and C.R. performed experiments, developed protocols, acquired and analyzed NMR spectra, and contributed to manuscript preparation. All authors reviewed the manuscript.

Corresponding author

Correspondence to David W. Hoffman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1166 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffman, D.W., Rasmussen, C. Position-specific carbon stable isotope analysis of glyphosate: isotope fingerprinting of molecules within a mixture. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05326-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05326-5

Keywords

Navigation