Skip to main content
Log in

Metal–ligand cross-link strategy engineered iron-doped dopamine-based superstructure as peroxidase-like nanozymes for detection of glucose

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanozymes are nanomaterials with mimetic enzyme properties and the related research has attracted much attention. It is of great value to develop methods to construct nanozymes and to study their application in bioanalysis. Herein, the metal–ligand cross-linking strategy was developed to fabricate superstructure nanozymes. This strategy takes advantage of being easy to operate, adjustable, cheap, and universal. The fabricated superstructure nanozymes possess efficient peroxidase-like catalytic activity. The enzyme reaction kinetic tests demonstrated that for TMB and H2O2, the Km is 0.229 and 1.308 mM, respectively. Furthermore, these superstructure nanozymes are applied to highly efficient and sensitive detection of glucose. The linear range for detecting glucose is 20–2000 μM, and the limit of detection is 17.5 μM. Furthermore, mechanistic research illustrated that this integrated system oxidizes glucose to produce hydrogen peroxide and further catalyzes the production of ·OH and O2·–, which results in a chromogenic reaction of oxidized TMB for the detection of glucose. This work could not only contribute to the development of efficient nanozymes but also inspire research in the highly sensitive detection of other biomarkers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liang M, Yan X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190–200.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang X, Yang C, An P, Cui C, Ma Y, Liu H, et al. Creating enzyme-mimicking nanopockets in metal-organic frameworks for catalysis. Sci Adv. 2022;8(40):eadd5678.

  3. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.

    Article  CAS  PubMed  Google Scholar 

  4. He M-Q, Ai Y, Hu W, Guan L, Ding M, Liang Q. Recent advances of seed-mediated growth of metal nanoparticles: from growth to applications. Adv Mater. 2023;35(46):2211915.

    Article  CAS  Google Scholar 

  5. Ai Y, He M-Q, Sun H, Jia X, Wu L, Zhang X, et al. Ultra-small high-entropy alloy nanoparticles: efficient nanozyme for enhancing tumor photothermal therapy. Adv Mater. 2023;35(23):2302335.

    Article  CAS  Google Scholar 

  6. Ai Y, Hu Z-N, Liang X, Sun H, Xin H, Liang Q. Recent advances in nanozymes: from matters to bioapplications. Adv Funct Mater. 2022;32(14):2110432.

    Article  CAS  Google Scholar 

  7. Abdelhamid HN, Mahmoud GA-E, Sharmouk W. A cerium-based MOFzyme with multi-enzyme-like activity for the disruption and inhibition of fungal recolonization. J Mater Chem B. 2020;8(33):7548–56.

    Article  CAS  PubMed  Google Scholar 

  8. Abdelhamid HN, Sharmoukh W. Intrinsic catalase-mimicking MOFzyme for sensitive detection of hydrogen peroxide and ferric ions. Microchem J. 2021;163:105873.

    Article  CAS  Google Scholar 

  9. Najmi P, Keshmiri N, Ramezanzadeh M, Ramezanzadeh B, Arjmand M. Design of nacre-inspired 2D-MoS2 nanosheets assembled with mesoporous covalent organic frameworks (COFs) for smart coatings. ACS Appl Mater Interfaces. 2022;14(48):54141–56.

    Article  CAS  PubMed  Google Scholar 

  10. Ai Y, Sun H, Gao Z, Wang C, Guan L, Wang Y, et al. Dual enzyme mimics based on metal–ligand cross-linking strategy for accelerating ascorbate oxidation and enhancing tumor therapy. Adv Funct Mater. 2021;31(40):2103581.

    Article  CAS  Google Scholar 

  11. Jin G, Wang C, Ran G, Hao S, Song Q. Protein-stabilized Ir nanoparticles with usual charge-selective peroxidase properties. J Mater Chem B. 2021;9(40):8464–71.

    Article  CAS  PubMed  Google Scholar 

  12. Ai Y, You J, Gao J, Wang J, Sun H, Ding M, et al. Multi-shell nanocomposites based multienzyme mimetics for efficient intracellular antioxidation. Nano Res. 2021;14(8):2644–53.

    Article  CAS  Google Scholar 

  13. Zeng Y, Li Y, Tan X, Gong J, Wang Z, An Y, et al. B, N-doped PdRu aerogels as high-performance peroxidase mimics for sensitive detection of glucose. ACS Appl Mater Interfaces. 2021;13(31):36816–23.

    Article  CAS  PubMed  Google Scholar 

  14. An M, He M-Q, Lin C, Wu Y, Ai Y, Xin H, et al. Recent progress of nanozymes with different spatial dimensions for bioanalysis. Mater Today Nano. 2023;22:100330.

    Article  CAS  Google Scholar 

  15. Liu M, Zhu Y, Jin D, Li L, Cheng J, Liu Y. Hemin-caged ferritin acting as a peroxidase-like nanozyme for the selective detection of tumor cells. Inorg Chem. 2021;60(19):14515–9.

    Article  CAS  PubMed  Google Scholar 

  16. Teng L, Han X, Liu Y, Lu C, Yin B, Huan S, et al. Smart nanozyme platform with activity-correlated ratiometric molecular imaging for predicting therapeutic effects. Angew Chem Int Ed. 2021;60(50):26142–50.

    Article  CAS  Google Scholar 

  17. Zhao C, Chen J, Ye J, Li Z, Su L, Wang J, et al. Structural transformative antioxidants for dual-responsive anti-inflammatory delivery and photoacoustic inflammation imaging. Angew Chem Int Ed. 2021;60(26):14458–66.

    Article  CAS  Google Scholar 

  18. Li F, Sun H, Ren J, Zhang B, Hu X, Fang C, et al. A nuclease-mimetic platinum nanozyme induces concurrent DNA platination and oxidative cleavage to overcome cancer drug resistance. Nat Commun. 2022;13(1):7361.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang J, Zhao B, Chen S, Wang Y, Zhang Y, Wang Y, et al. Near-infrared light irradiation induced mild hyperthermia enhances glutathione depletion and DNA interstrand cross-link formation for efficient chemotherapy. ACS Nano. 2020;14(11):14831–45.

    Article  CAS  PubMed  Google Scholar 

  20. Sun H, Ai Y, Qi H, Guan L, Hu W, Huang H, et al. Pt/Ag-PEG-Ce6 nanosystem with enhanced near-infrared absorption and peroxidase-like activity for synergistic photodynamic/photothermal therapy. Adv Ther. 2022;5(11):2200089.

    Article  CAS  Google Scholar 

  21. Ai Y, He M-Q, Wan C, Luo H, Xin H, Wang Y, et al. Nanoplatform-based reactive oxygen species scavengers for therapy of ischemia-reperfusion injury. Adv Ther. 2022;5(11):2200066.

    Article  CAS  Google Scholar 

  22. Fu R, Ma Z, Zhao H, Jin H, Tang Y, He T, et al. Research progress in iron-based nanozymes: catalytic mechanisms, classification, and biomedical applications. Anal Chem. 2023;95(29):10844–58.

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Wang L, Liu H, Pan Y, Li C, Xie Z, et al. Ionic covalent-organic framework nanozyme as effective cascade catalyst against bacterial wound infection. Small. 2021;17(32):e2100756.

    Article  PubMed  Google Scholar 

  24. Li S, Shang L, Xu B, Wang S, Gu K, Wu Q, et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew Chem Int Ed. 2019;58(36):12624–31.

    Article  CAS  Google Scholar 

  25. Xu J, Wang J, Ye J, Jiao J, Liu Z, Zhao C, et al. Metal-coordinated supramolecular self-assemblies for cancer theranostics. Adv Sci. 2021;8(16):e2101101.

    Article  Google Scholar 

  26. Song E, Li Y, Chen L, Lan X, Hou C, Liu C, et al. An amino acid-based supramolecular nanozyme by coordination self-assembly for cascade catalysis and enhanced chemodynamic therapy towards biomedical applications. Nanoscale Adv. 2021;3(22):6482–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Q, Tian J, Liu J, Zhu M, Gao Z, Hu X, et al. Modular assembly of tumor-penetrating and oligomeric nanozyme based on intrinsically self-assembling protein nanocages. Adv Mater. 2021;33(39):e2103128.

    Article  PubMed  Google Scholar 

  28. Zhao L, Liu Y, Chang R, Xing R, Yan X. Supramolecular photothermal nanomaterials as an emerging paradigm toward precision cancer therapy. Adv Funct Mater. 2019;29(4):1806877.

    Article  Google Scholar 

  29. Zhang J, Zheng Y, Lee J, Hoover A, King SA, Chen L, et al. Continuous glucose monitoring enabled by fluorescent nanodiamond boronic hydrogel. Adv Sci. 2023;10(7):2203943.

    Article  CAS  Google Scholar 

  30. Liu K, Liu R, Wang D, Pan R, Chen H-Y, Jiang D. Real-time and spatial electroanalysis of biomolecules in one living cell using liquid-phase modified nanopipette. CCS Chem. 2023;5(6):1285–92.

    Article  CAS  Google Scholar 

  31. Adeel M, Asif K, Rahman MM, Daniele S, Canzonieri V, Rizzolio F. Glucose detection devices and methods based on metal–organic frameworks and related materials. Adv Funct Mater. 2021;31(52):2106023.

    Article  CAS  Google Scholar 

  32. Nguyen PT, Lee J, Cho A, Kim MS, Choi D, Han JW, et al. Rational development of co-doped mesoporous ceria with high peroxidase-mimicking activity at neutral pH for paper-based colorimetric detection of multiple biomarkers. Adv Funct Mater. 2022;32(21):2112428.

    Article  CAS  Google Scholar 

  33. Nguyen QH, Lee DH, Nguyen PT, Le PG, Kim MI. Foldable paper microfluidic device based on single iron site-containing hydrogel nanozyme for efficient glucose biosensing. Chem Eng J. 2023;454:140541.

    Article  CAS  Google Scholar 

  34. Ahn HT, An H-R, Hong YC, Lee SC, Le TN, Le XA, et al. Ultrarapid, size-controlled, high-crystalline plasma-mediated synthesis of ceria nanoparticles for reagent-free colorimetric glucose test strips. Sens Actuators B Chem. 2020;320:128404.

  35. Ai Y, Sun H, Wang C, Zheng W, Han Q, Liang Q. Tunable assembly of organic-inorganic molecules into hierarchical superstructures as ligase mimics for enhancing tumor photothermal therapy. Small. 2022;18(10):e2105304.

    Article  PubMed  Google Scholar 

  36. Ai Y, Sun H, Gao Z, Wang C, Guan L, Wang Y, et al. Dual enzyme mimics based on metal–ligand cross-linking strategy for accelerating ascorbate oxidation and enhancing tumor therapy. Adv Funct Mater. 2021;31(40):2103581.

    Article  CAS  Google Scholar 

  37. Duan Y, Liu X, Han L, Asahina S, Xu D, Cao Y, et al. Optically active chiral CuO “nanoflowers.” J Am Chem Soc. 2014;136(20):7193–6.

    Article  CAS  PubMed  Google Scholar 

  38. Jiang W, Qu Z, Kumar P, Vecchio D, Wang Y, Ma Y, et al. Emergence of complexity in hierarchically organized chiral particles. Science. 2020;368(6491):642–8.

    Article  CAS  PubMed  Google Scholar 

  39. Tang L, Vo T, Fan X, Vecchio D, Ma T, Lu J, et al. Self-assembly mechanism of complex corrugated particles. J Am Chem Soc. 2021;143(47):19655–67.

    Article  CAS  PubMed  Google Scholar 

  40. Liu M, Chen G, Qin Y, Li J, Hu L, Gu W, et al. Proton-regulated catalytic activity of nanozymes for dual-modal bioassay of urease activity. Anal Chem. 2021;93(28):9897–903.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao J, Bao X, Meng T, Wang S, Lu S, Liu G, et al. Fe(II)-driven self-assembly of enzyme-like coordination polymer nanoparticles for cascade catalysis and wound disinfection applications. Chem Eng J. 2021;420(1):129674.

    Article  CAS  Google Scholar 

  42. Gilbertson LM, Albalghiti EM, Fishman ZS, Perreault F, Corredor C, Posner JD, et al. Shape-dependent surface reactivity and antimicrobial activity of nano-cupric oxide. Environ Sci Technol. 2016;50(7):3975–84.

    Article  CAS  PubMed  Google Scholar 

  43. Chang S, Liu C, Sun Y, Yan Z, Zhang X, Hu X, et al. Fe3O4 nanoparticles coated with Ag-nanoparticle-embedded metal–organic framework MIL-100(Fe) for the catalytic reduction of 4-nitrophenol. ACS Appl Nano Mater. 2020;3(3):2302–9.

    Article  CAS  Google Scholar 

  44. Ye N, Huang S, Yang H, Wu T, Tong L, Zhu F, et al. Hydrogen-bonded biohybrid framework-derived highly specific nanozymes for biomarker sensing. Anal Chem. 2021;93(41):13981–9.

    Article  CAS  PubMed  Google Scholar 

  45. Wang J, Zhang J, Hu Y, Jiang H, Li C. Activating multisite high-entropy alloy nanocrystals via enriching M-pyridinic N-C bonds for superior electrocatalytic hydrogen evolution. Sci Bull. 2022;67(18):1890–7.

    Article  CAS  Google Scholar 

  46. Chavalala R, Mashazi P. Pd nanocatalysts adsorbed onto silica nanoparticle coated indium tin oxide: a reusable nanozyme for glucose detection. J Mater Chem B. 2023;11(33):7961–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (82304442, 22304099, 82270302), National Key R&D Program of China (2023YFC3504401, 2022YFA1103403), Postdoctoral Innovative Talent Support Program (BX20220160), China Postdoctoral Science Foundation Funded Project (2023T160372, 2022M711779), and Young Elite Scientist Sponsorship Program of the Beijing Association for Science and Technology (BYESS2023166).

Author information

Authors and Affiliations

Authors

Contributions

Mengying An, Meng-Qi He, Yongjian Ai, and Hongbo Xin designed the experiments and wrote the manuscript with inputs from all authors. Mengying An, Meng-Qi He, Caishi Lin, Keyu Deng, and Yongjian Ai carried out the material synthesis, characterization, and catalytic performance and analysed the data. Hongbo Xin provided technical guidance and financial support.

Corresponding authors

Correspondence to Meng-Qi He, Yongjian Ai or Hongbo Xin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Nanozymes with guest editors Vipul Bansal, Sudipta Seal, and Hui Wei.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 18322 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, M., He, MQ., Lin, C. et al. Metal–ligand cross-link strategy engineered iron-doped dopamine-based superstructure as peroxidase-like nanozymes for detection of glucose. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05317-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05317-6

Keywords

Navigation