Skip to main content
Log in

A sensitive fluorescence biosensor based on ligation-transcription and CRISPR/Cas13a-assisted cascade amplification strategies to detect the H1N1 virus

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We propose a sensitive H1N1 virus fluorescence biosensor based on ligation-transcription and CRISPR/Cas13a-assisted cascade amplification strategies. Products are generated via the hybridization of single-stranded DNA (ssDNA) probes containing T7 promoter and crRNA templates to a target RNA sequence using SplintR ligase. This generates large crRNA quantities in the presence of T7 RNA polymerase. At such crRNA quantities, ternary Cas13a, crRNA, and activator complexes are successfully constructed and activate Cas13a to enhance fluorescence signal outputs. The biosensor sensitively and specifically monitored H1N1 viral RNA levels down to 3.23 pM and showed good linearity when H1N1 RNA concentrations were 100 pM–1 µM. Biosensor specificity was also excellent. Importantly, our biosensor may be used to detect other viral RNAs by altering the sequences of the two probe junctions, with potential applications for the clinical diagnosis of viruses and other biomedical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fernandes Q, Inchakalody VP, Merhi M, Mestiri S, Taib N, Moustafa Abo El-Ella D, et al. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines. Ann Med. 2022;54(1):524–40.

  2. Wilson S, Bohn MK, Adeli K. POCT: an inherently ideal tool in pediatric laboratory medicine. Ejifcc. 2021;32(2):145–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bustin SA, Shipley GL, Kirvell S, Mueller R, Nolan T. RT-qPCR detection of SARS-CoV-2: no need for a dedicated reverse transcription step. Int J Mol Sci. 2022;23(3):1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Minozzo GA, Corona TF, da Cruz ECR, de Castro WAC, Kmetiuk LB, Dos Santos AP, et al. Novel duplex RT-qPCR for animal rabies surveillance. Transbound Emerg Dis. 2022;69(5):e2261–7.

    Article  CAS  PubMed  Google Scholar 

  5. Liu G, Lin Q, Jin S, Gao C. The CRISPR-Cas toolbox and gene editing technologies. Mol Cell. 2022;82(2):333–47.

    Article  CAS  PubMed  Google Scholar 

  6. Song X, Liu C, Wang N, Huang H, He S, Gong C, et al. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv Drug Deliv Rev. 2021;168:158–80.

    Article  CAS  PubMed  Google Scholar 

  7. Cho S, Shin J, Cho B-K. Applications of CRISPR/Cas system to bacterial metabolic engineering. Int J Mol Sci. 2018;19(4):1089.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bhatia S, Pooja, Yadav SK. CRISPR-Cas for genome editing: classification, mechanism, designing and applications. Int J Biol Macromol. 2023;238:124054.

  9. Nguyen AVT, Dao TD, Trinh TTT, Choi D-Y, Yu S-T, Park H, et al. Sensitive detection of influenza a virus based on a CdSe/CdS/ZnS quantum dot-linked rapid fluorescent immunochromatographic test. Biosens Bioelectron. 2020;155: 112090.

    Article  CAS  PubMed  Google Scholar 

  10. Gumus E, Bingol H, Zor E. Lateral flow assays for detection of disease biomarkers. J Pharm Biomed Anal. 2023;225: 115206.

    Article  CAS  PubMed  Google Scholar 

  11. Chen X, Wu W, Zeng J, Ibañez E, Cifuentes A, Mao J, et al. A smartphone-powered photoelectrochemical POCT via Z-scheme Cu2O/Cu3SnS4 for dibutyl phthalate in the environmental and food. J Hazard Mater. 2023;460: 132281.

    Article  CAS  PubMed  Google Scholar 

  12. Yang H, Zhang Y, Teng X, Hou H, Deng R, Li J. CRISPR-based nucleic acid diagnostics for pathogens. TrAC, Trends Anal Chem. 2023;160: 116980.

    Article  CAS  Google Scholar 

  13. Dong J, Wu X, Hu Q, Sun C, Li J, Song P, et al. An immobilization-free electrochemical biosensor based on CRISPR/Cas13a and FAM-RNA-MB for simultaneous detection of multiple pathogens. Biosens Bioelectron. 2023;241: 115673.

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Liu X, Wei J, Bu S, Li Z, Hao Z, et al. Ultrasensitive detection of microRNAs based on click chemistry-terminal deoxynucleotidyl transferase combined with CRISPR/Cas12a. Biochimie. 2023;208:38–45.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou H, Bu S, Xu Y, Xue L, Li Z, Hao Z, et al. CRISPR/Cas13a combined with hybridization chain reaction for visual detection of influenza A (H1N1) virus. Anal Bioanal Chem. 2022;414(29–30):8437–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou B, Yang R, Sohail M, Kong X, Zhang X, Fu N, et al. CRISPR/Cas14 provides a promising platform in facile and versatile aptasensing with improved sensitivity. Talanta. 2023;254: 124120.

    Article  CAS  PubMed  Google Scholar 

  17. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356(6336):438–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barnes KG, Lachenauer AE, Nitido A, Siddiqui S, Gross R, Beitzel B, et al. Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time. Nat Commun. 2020;11(1):4131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei J, Alfajaro MM, DeWeirdt PC, Hanna RE, Lu-Culligan WJ, Cai WL, et al. Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell. 2021;184(1):76-91.e13.

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Xia Q, Wu J, Lin Y, Ju H. A sensitive electrochemical method for rapid detection of dengue virus by CRISPR/Cas13a-assisted catalytic hairpin assembly. Anal Chim Acta. 2021;1187: 339131.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang K, Sun Z, Shi K, Yang D, Bian Z, Li Y, Gou H, Jiang Z, Yang N, Chu P, et al. RPA-CRISPR/Cas12a-based detection of Haemophilus parasuis. Animals. 2023;13(21):3317.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xue T, Lu Y, Yang H, Hu X, Zhang K, Ren Y, et al. Isothermal RNA amplification for the detection of viable pathogenic bacteria to estimate the Salmonella virulence for causing enteritis. J Agric Food Chem. 2022;70(5):1670–8.

    Article  CAS  PubMed  Google Scholar 

  23. Liao C, Beisel CL. The tracrRNA in CRISPR biology and technologies. Annu Rev Genet. 2021;55(1):161–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takeda SN, Nakagawa R, Okazaki S, Hirano H, Kobayashi K, Kusakizako T, et al. Structure of the miniature type V-F CRISPR-Cas effector enzyme. Mol Cell. 2021;81(3):558-70.e3.

    Article  CAS  PubMed  Google Scholar 

  25. Cheng X, Song H, Ren D, Gao M, Xia X, Yu P, et al. Rolling circle transcription and CRISPR/Cas12a-assisted versatile bicyclic cascade amplification assay for sensitive uracil-DNA glycosylase detection. Talanta. 2023;262: 124684.

    Article  CAS  PubMed  Google Scholar 

  26. Wang G, Tian W, Liu X, Ren W, Liu C. New CRISPR-derived microRNA sensing mechanism based on Cas12a self-powered and rolling circle transcription-unleashed real-time crRNA recruiting. Anal Chem. 2020;92(9):6702–8.

    Article  CAS  PubMed  Google Scholar 

  27. Woo CH, Jang S, Shin G, Jung GY, Lee JW. Sensitive fluorescence detection of SARS-CoV-2 RNA in clinical samples via one-pot isothermal ligation and transcription. Nat Biomed Eng. 2020;4(12):1168–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou C, Li W, Zhao Y, Gu K, Liao Z, Guo B, et al. Sensitive detection of viable Salmonella bacteria based on tertiary cascade signal amplification via splintR ligase ligation-PCR amplification-CRISPR/Cas12a cleavage. Anal Chim Acta. 2023;1248: 340885.

    Article  CAS  PubMed  Google Scholar 

  29. Ilkhani H, Farhad S. A novel electrochemical DNA biosensor for Ebola virus detection. Anal Biochem. 2018;557:151–5.

    Article  CAS  PubMed  Google Scholar 

  30. Gao M, Daniel D, Zou H, Jiang S, Lin S, Huang C, et al. Rapid detection of a dengue virus RNA sequence with single molecule sensitivity using tandem toehold-mediated displacement reactions. Chem Commun. 2018;54(8):968–71.

    Article  CAS  Google Scholar 

  31. Peng Y, Pan Y, Sun Z, et al. An electrochemical biosensor for sensitive analysis of the SARS-CoV-2 RNA[J]. Biosens Bioelectron. 2021;186:113309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zou L, Li T, Shen R, Ren S, Ling L. A label-free light-up fluorescent sensing platform based upon hybridization chain reaction amplification and DNA triplex assembly. Talanta. 2018;189:137–42.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu D, Ma Z, Wang Z, Wei Q, Li X, Wang J, et al. Modular DNA circuits for point-of-care colorimetric assay of infectious pathogens. Anal Chem. 2021;93(41):13861–9.

    Article  CAS  PubMed  Google Scholar 

  34. Feng D-Q, Liu G. Target-activating and toehold displacement Ag NCs/GO biosensor-mediating signal shift and enhancement for simultaneous multiple detection. Anal Chem. 2021;93(48):16025–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Science and Technology Development Plans of Jilin Province (20230203143SF).

Author information

Authors and Affiliations

Authors

Contributions

Lulu Xue: experiments, investigation, methodology, data curation, writing—original draft. Shengjun Bu: methodology, statistical analysis, software. Mengyao Xu: conceptualization, methodology. Jiaqi Wei: investigation, software. Hongyu Zhou: validation. Yao Xu: validation. Zhuo Hao: data curation. Zehong Li: conceptualization, methodology. Jiayu Wan: writing—review, supervision.

Corresponding authors

Correspondence to Zehong Li or Jiayu Wan.

Ethics declarations

Declarations

All animal procedures were performed in accordance with the Guidelines of Animal Ethics Committee of Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, and approved by the Animal Ethics Committee of Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Bu, S., Xu, M. et al. A sensitive fluorescence biosensor based on ligation-transcription and CRISPR/Cas13a-assisted cascade amplification strategies to detect the H1N1 virus. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05269-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05269-x

Keywords

Navigation