Skip to main content
Log in

The tightest self-assembled ruthenium metal–organic framework combined with proximity hybridization for ultrasensitive electrochemiluminescence analysis of paraquat

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs), as porous materials, have great potential for exploring high-performance electrochemiluminescence (ECL) probes. However, the constrained applicability of MOFs in the realm of ECL biosensing is primarily attributed to their inadequate water stability, which consequently impairs the overall ECL efficiency. Herein, we developed a competitive ECL biosensor based on a novel tightest structural ruthenium-based organic framework emitter combining the proximity hybridization-induced catalytic hairpin assembly (CHA) strategy and the quenching effect between the Ru-MOF and ferrocene for detecting paraquat (PQ). Through a simple hydrothermal synthesis strategy, ruthenium and 2,2ʹ-bipyrimidine (bpm) are head-to-head self-assembled to obtain a novel tightest structural Ru-MOF. Due to the metal–ligand charge-transfer (MLCT) effect between ruthenium and the bpm ligand and the connectivity between the internal chromophore units, the Ru-MOF exhibits strong ECL emissions. Meanwhile, the coordination-driven Ru-MOF utilizes strong metal–organic coordination bonds as building blocks, which effectively solves the problem of serious leakage of chromophores caused by water solubility. The sensitive analysis of PQ is realized in the range of 1 pg/mL to 1 ng/mL with a detection limit of 0.352 pg/mL. The tightest structural Ru-MOF driven by the coordination of ruthenium and bridging ligands (2,2ʹ-bipyrimidine, bpm) provides new horizons for exploring high-performance MOF-based ECL probes for quantitative analysis of biomarkers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li C, Xie Z, Chen Q, Zhang Y, Chu Y, Guo Q, Zhou W, Zhang Y, Liu P, Chen H, Jiang C, Sun K, Sun T. Supramolecular hunter stationed on red blood cells for detoxification based on specific molecular recognition. ACS Nano. 2020;14:4950–62.

    Article  CAS  PubMed  Google Scholar 

  2. Wang F, Zhang X, Huangfu C, Zhi H, Wang Y, Feng L. Novel paraquat detection strategy enabled by carboxylatopillar[5]arene confined in nanochannels on a paper-based sensor. Anal Chem. 2022;94:18059–66.

    Article  CAS  PubMed  Google Scholar 

  3. Wiwasuku T, Chuaephon A, Habarakada U, Boonmak J, Puangmali T, Kielar F, Harding DJ, Youngme S. A water-stable lanthanide-based MOF as a highly sensitive sensor for the selective detection of paraquat in agricultural products. ACS Sustain Chem Eng. 2022;10:2761–71.

    Article  CAS  Google Scholar 

  4. Duan W, Liu C, Zhou J, Yu Q, Duan Y, Zhang T, Li Y, Fu G, Sun Y, Tian J, Xia Z, Yang Y, Liu Y, Xu S. Upregulation of mitochondrial calcium uniporter contributes to paraquat-induced neuropathology linked to Parkinson’s disease via imbalanced OPA1 processing. J Hazard Mater. 2023;453:131369.

    Article  CAS  PubMed  Google Scholar 

  5. El-Saadi MW, Tian X, Grames M, Ren M, Keys K, Li H, Knott E, Yin H, Huang S, Lu XH. Tracing brain genotoxic stress in Parkinson’s disease with a novel single-cell genetic sensor. Sci Adv. 2022;8: d1700.

    Article  Google Scholar 

  6. Tong T, Duan W, Xu Y, Hong H, Xu J, Fu G, Wang X, Yang L, Deng P, Zhang J, He H, Mao G, Lu Y, Lin X, Yu Z, Pi H, Cheng Y, Xu S, Zhou Z. Paraquat exposure induces Parkinsonism by altering lipid profile and evoking neuroinflammation in the midbrain. Environ Int. 2022;169:107512.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Li L, Wang Y, Wang H, Xu Z, Tian Y, Sun Y, Yang J, Shen Y. Ultrasensitive and rapid colorimetric detection of paraquat via a high specific VHH nanobody. Biosens Bioelectron. 2022;205:114089.

    Article  CAS  PubMed  Google Scholar 

  8. Ran J, Zhang L, Yao J, Wang S, Liang P, Dong N. Cucurbit[7]uril as a matrix solid-phase dispersion for the extraction of quaternary ammonium pesticides from vegetables and their determination using HPLC–UV. Food Chem. 2021;350:129236.

    Article  CAS  PubMed  Google Scholar 

  9. Guterres Silva LR, Santos Stefano J, Cornélio Ferreira Nocelli R, Campos Janegitz B. 3D electrochemical device obtained by additive manufacturing for sequential determination of paraquat and carbendazim in food samples. Food Chem. 2023;406:135038.

    Article  CAS  PubMed  Google Scholar 

  10. Kang Z, Yang J, Jiang J, Zhao L, Zhang Y, Tu Q, Wang J, Yuan M. Pillar[5]arenes modified tetraphenylethylene as fluorescent chemosensor for paraquat detection. Sens Actuators B Chem. 2022;370:132436.

    Article  CAS  Google Scholar 

  11. Kumar NM, Picchetti P, Hu C, Grimm LM, Biedermann F. Chemiluminescent cucurbit[n]uril-based chemosensor for the detection of drugs in biofluids. ACS Sensors. 2022;7:2312–9.

    Article  CAS  PubMed  Google Scholar 

  12. Jian X, Xu J, Guo J, Zhao J, Shen T, Gao Z, Song YY. Cascade-gates guarded asymmetrical nanochannel membrane: an interference-free device for straightforward detection of trace biomarker in undiluted serum. Small. 2023;19:2205995.

    Article  CAS  Google Scholar 

  13. Li J, Jia H, Ren X, Li Y, Liu L, Feng R, Ma H, Wei Q. Dumbbell plate-shaped AIEgen-based luminescent MOF with high quantum yield as self-enhanced ECL tags: mechanism insights and biosensing application. Small. 2022;18:2106567.

    Article  CAS  Google Scholar 

  14. Song X, Zhao L, Zhang N, Liu L, Ren X, Ma H, Luo C, Li Y, Wei Q. Zinc-based metal–organic framework with MLCT properties as an efficient electrochemiluminescence probe for trace detection of trenbolone. Anal Chem. 2022;94:14054–60.

    Article  CAS  PubMed  Google Scholar 

  15. Meng C, Knežević S, Du F, Guan Y, Kanoufi F, Sojic N, Xu G. Recent advances in electrochemiluminescence imaging analysis. eScience. 2022;2:591–605.

    Article  Google Scholar 

  16. Qin X, Zhan Z, Ding Z. Progress in electrochemiluminescence biosensors based on organic framework emitters. Curr Opin Electrochem. 2023;39:101283.

    Article  CAS  Google Scholar 

  17. Yang Y, Jiang H, Li J, Zhang J, Gao S, Lu M, Zhang X, Liang W, Zou X, Yuan R, Xiao D. Highly stable Ru-complex-based metal-covalent organic frameworks as novel type of electrochemiluminescence emitters for ultrasensitive biosensing. Mater Horiz. 2023;10:3005–13.

    Article  CAS  PubMed  Google Scholar 

  18. Daviddi E, Oleinick A, Svir I, Valenti G, Paolucci F, Amatore C. Theory and simulation for optimising electrogenerated chemiluminescence from tris(2,2′-bipyridine)-ruthenium (II)-doped silica nanoparticles and tripropylamine. ChemElectroChem. 2017;4:1719–30.

    Article  CAS  Google Scholar 

  19. Liu Y, Zhang H, Li B, Liu J, Jiang D, Liu B, Sojic N. Single biomolecule imaging by electrochemiluminescence. J Am Chem Soc. 2021;143:17910–4.

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Liu D, Meng S, Zhang J, Li L, You T. Regulation of Ru(bpy)32+ electrochemiluminescence based on distance-dependent electron transfer of ferrocene for dual-signal readout detection of aflatoxin b1 with high sensitivity. Anal Chem. 2022;94:1294–301.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang X, Tian L, Sun Z, Wu Q, Shan X, Zhao Y, Chen R, Lu J. A molecule-imprinted electrochemiluminescence sensor based on self-accelerated Ru(bpy)32+@ZIF-7 for ultra-sensitive detection of procymidone. Food Chem. 2022;391:133235.

    Article  CAS  PubMed  Google Scholar 

  22. Tian Y, Zhu G. Porous aromatic frameworks (PAFs). Chem Rev. 2020;120:8934–86.

    Article  CAS  PubMed  Google Scholar 

  23. Mohan B, Kumar S, Kumar V, Jiao T, Sharma HK, Chen Q. Electrochemiluminescence metal-organic frameworks biosensing materials for detecting cancer biomarkers. TrAC-Trend Anal Chem. 2022;157:116735.

    Article  CAS  Google Scholar 

  24. Huang W, Hu G, Liang W, Wang J, Lu M, Yuan R, Xiao D. Ruthenium (II) complex-grafted hollow hierarchical metal–organic frameworks with superior electrochemiluminescence performance for sensitive assay of thrombin. Anal Chem. 2021;93:6239–45.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao G, Wang Y, Li X, Yue Q, Dong X, Du B, Cao W, Wei Q. Dual-quenching electrochemiluminescence strategy based on three-dimensional metal–organic frameworks for ultrasensitive detection of amyloid-β. Anal Chem. 2019;91:1989–96.

    Article  CAS  PubMed  Google Scholar 

  26. Li B, Huang X, Lu Y, Fan Z, Li B, Jiang D, Sojic N, Liu B. High Electrochemiluminescence from Ru(bpy)32+ embedded metal–organic frameworks to visualize single molecule movement at the cellular membrane. Adv Sci. 2022;9:2204715.

    Article  CAS  Google Scholar 

  27. Liu Y, Wang F, Ge S, Zhang L, Zhang Z, Liu Y, Zhang Y, Ge S, Yu J. Programmable T-junction structure-assisted CRISPR/Cas12a electrochemiluminescence biosensor for detection of Sa-16S rDNA. ACS Appl Mater Interfaces. 2023;15:617–25.

    Article  PubMed  Google Scholar 

  28. Wang Q, Xiong C, Li J, Deng Q, Zhang X, Wang S, Chen M. High-performance electrochemiluminescence sensors based on ultra-stable perovskite quantum dots@ZIF-8 composites for aflatoxin B1 monitoring in corn samples. Food Chem. 2023;410:135325.

    Article  CAS  PubMed  Google Scholar 

  29. Yan M, Ye J, Zhu Q, Zhu L, Huang J, Yang X. Ultrasensitive immunosensor for cardiac troponin I detection based on the electrochemiluminescence of 2D Ru-MOF nanosheets. Anal Chem. 2019;91:10156–63.

    Article  CAS  PubMed  Google Scholar 

  30. Huang X, Zhang Y, Xu W, Xu W, Guo L, Qiu B, Lin Z. An ultrasensitive electrochemiluminescence biosensor for nuclear factor kappa B p50 based on the proximity hybridization-induced hybridization chain reaction. Chem Commun. 2019;55:12980–3.

    Article  CAS  Google Scholar 

  31. Zhang R, Wu J, Ao H, Fu J, Qiao B, Wu Q, Ju H. A rolling circle-amplified G-quadruplex/hemin DNAzyme for chemiluminescence immunoassay of the SARS-CoV-2 protein. Anal Chem. 2021;93:9933–8.

    Article  CAS  PubMed  Google Scholar 

  32. Gong W, Shu J, Ju P, Wu S, Chen Y, Ding S, Yang W, Luo R. A stochastic DNA walker electrochemiluminescence biosensor based on quenching effect of Pt@CuS on luminol@Au/Ni-Co nanocages for ultrasensitive detection of I27L gene. Chem Eng J. 2022;434:134681.

    Article  CAS  Google Scholar 

  33. Pan M, Gao M, Yang X, Liang W, Yuan R, Zhuo Y. Wireframe orbit-accelerated bipedal DNA walker for electrochemiluminescence detection of methyltransferase activity. ACS Sensors. 2022;7:2475–82.

    Article  CAS  PubMed  Google Scholar 

  34. Song L, Zhuge Y, Zuo X, Li M, Wang F. DNA walkers for biosensing development. Adv Sci. 2022;9:2200327.

    Article  CAS  Google Scholar 

  35. Guo Y, Liu S, Yang H, Wang P, Feng Q. Regenerable electrochemical biosensor for exosomes detection based on the dual-recognition proximity binding-induced DNA walker. Sens Actuators B Chem. 2021;349:130765.

    Article  CAS  Google Scholar 

  36. Man Y, Liu J, Wu J, Yin L, Pei H, Wu Q, Xia Q, Ju H. An anchored monopodial DNA walker triggered by proximity hybridization for amplified amperometric biosensing of nucleic acid and protein. Anal Chim Acta. 2020;1107:48–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation (NNSF) of China (81972024 and 52172154) and the Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0332), China.

Author information

Authors and Affiliations

Authors

Contributions

Ling Qin, conceptualization, methodology, investigation, data analysis, and writing, original draft; Wenbin Liang, conceptualization, supervision, and writing, review and editing; Weiguo Yang, investigation; Shenghan Tang, data analysis; Ruo Yuan, resources and project administration; Yan Li, supervision, project administration, and writing, review and editing; Jun Yang, supervision, funding acquisition, and writing, review and editing; Shanshan Hu, writing, review and editing, and funding acquisition.

Corresponding authors

Correspondence to Jun Yang, Yan Li or Shanshan Hu.

Ethics declarations

Ethics approval

This study has been approved by the Human Ethics Committee of the Ninth People’s Hospital of Chongqing, China (2020-LS-009), and has been performed in accordance with the ethical standards.

Consent to participate

All individual participants who provide serum samples gave informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Emerging Trends in Electrochemical Analysis with guest editors Sabine Szunerits, Wei Wang, and Adam T. Woolley.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 440 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Liang, W., Yang, W. et al. The tightest self-assembled ruthenium metal–organic framework combined with proximity hybridization for ultrasensitive electrochemiluminescence analysis of paraquat. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05237-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05237-5

Keywords

Navigation