Skip to main content
Log in

Synergistically enhancing electrocatalysis and non-enzymatic sensing for glucose by iridium single-atom/nickel oxide/N-doped graphene

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The development of novel catalyst with high catalytic activity is important for electrochemical non-enzymatic glucose sensing. Here, iridium single-atom/nickel oxide nanoparticle/N-doped graphene nanosheet (Ir1/NiO/NG) with the loading of 1.13 wt% Ir was successfully synthesized for constructing electrochemical non-enzymatic glucose sensor for the first time. The morphology and structure of Ir1/NiO/NG were characterized by XRD, SEM, TEM, HRTEM, and XPS, and the presence of Ir SAs was confirmed by AC-HAADF-STEM. The Ir1/NiO/NG shows 65 mV lower oxidation potential and 3.3 times higher response current than Ni(OH)2/NG. In addition, Ir1/NiO/NG exhibits high sensitivity (70.09 μA mM−1 cm−2), excellent selectivity, low detection limit (2.00 μM), and great stability (91.53% current remaining after 21 days) for electrochemical non-enzymatic glucose sensing. The outstanding catalytic and sensing performance of Ir1/NiO/NG is mainly attributed to synergistic effect of Ir SAs, NiO nanoparticles, and highly conductive NG, which modulate the electronic and geometric structure of Ir1/NiO/NG. This work shows the promising potential of SACs in electrochemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jiang S, Chen Q, Lin J, Liao G, Shi T, Qian L. Thermal stress-induced fabrication of carbon micro/nanostructures and the application in high-performance enzyme-free glucose sensors. Sens Actuat B: Chem. 2021;345:130364. https://doi.org/10.1016/j.snb.2021.130364.

    Article  CAS  Google Scholar 

  2. Liu F, Wang P, Zhang Q, Wang Z, Liu Y, Zheng Z, et al. Porous Co3O4 nanosheets as a high-performance non-enzymatic sensor for glucose detection. Anal Bioanal Chem. 2018;410(29):7663–70. https://doi.org/10.1007/s00216-018-1380-4.

    Article  CAS  PubMed  Google Scholar 

  3. Xia M, Chu S, Wang S, Dong X, Chen C, Jiang Y, et al. Platinum nanoparticles confined in metal–organic frameworks as excellent peroxidase-like nanozymes for detection of uric acid. Anal Bioanal Chem. 2023;415(4):649–58. https://doi.org/10.1007/s00216-022-04453-1.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao Z, Wang T, Li K, Long D, Zhao J, Zhu F, et al. A flexible nonenzymatic sweat glucose sensor based on Au nanoflowers coated carbon cloth. Sens Actuat B: Chem. 2023;388:133798. https://doi.org/10.1016/j.snb.2023.133798.

    Article  CAS  Google Scholar 

  5. Chen X, Pan H, Liu H, Du M. Nonenzymatic glucose sensor based on flower-shaped Au@Pd core–shell nanoparticles–ionic liquids composite film modified glassy carbon electrodes. Electrochim Acta. 2010;56(2):636–43. https://doi.org/10.1016/j.electacta.2010.10.001.

    Article  CAS  Google Scholar 

  6. Guo MQ, Hong HS, Tang XN, Fang HD, Xu XH. Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochim Acta. 2012;63:1–8. https://doi.org/10.1016/j.electacta.2011.11.114.

    Article  CAS  Google Scholar 

  7. Arthanari S, Sivaprakasam R, Park J-E, Yang M, Lee H, Kim B-S, et al. Fabrication of porous non-enzymatic glucose sensing electrodes through nanosecond-laser patterning of met-al–organic frameworks. Adv. Mater. Technol. 2024, 2301561. https://doi.org/10.1002/admt.202301561.

  8. Chen C, Li J, Tang Z, Liao G, Nie L. In-situ co-precipitation of Bi-MOF derivatives for highly sensitive electrochemical glucose sensing. Microchem J. 2024;199:109897. https://doi.org/10.1016/j.microc.2024.109897.

    Article  CAS  Google Scholar 

  9. Fan Q, Li X, Dong H, Ni Z, Hu T. ZIF-67 anchored on MoS2/rGO heterostructure for non-enzymatic and visible-light-sensitive photoelectrochemical. Biosensing. 2024;14(1):38. https://doi.org/10.3390/bios14010038.

    Article  CAS  Google Scholar 

  10. Jiao L, Yan H, Wu Y, Gu W, Zhu C, Du D, et al. When nanozymes meet single-atom catalysis. Angew Chem Int Ed. 2020;59(7):2565–76. https://doi.org/10.1002/anie.201905645.

    Article  CAS  Google Scholar 

  11. Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem. 2018;2(6):65–81. https://doi.org/10.1038/s41570-018-0010-1.

    Article  ADS  CAS  Google Scholar 

  12. Jiao L, Xu W, Wu Y, Yan H, Gu W, Du D, et al. Single-atom catalysts boost signal amplification for biosensing. Chem Soc Rev. 2021;50(2):750–65. https://doi.org/10.1039/D0CS00367K.

    Article  CAS  PubMed  Google Scholar 

  13. Mao J, Yin J, Pei J, Wang D, Li Y. Single atom alloy: an emerging atomic site material for catalytic applications. Nano Today. 2020;34:100917. https://doi.org/10.1016/j.nantod.2020.100917.

    Article  CAS  Google Scholar 

  14. Zhang L, Ren Y, Liu W, Wang A, Zhang T. Single-atom catalyst: a rising star for green synthesis of fine chemicals. Natl Sci Rev. 2018;5(5):653–72. https://doi.org/10.1093/nsr/nwy077.

    Article  CAS  Google Scholar 

  15. Oh J-M, Venters CC, Di C, Pinto AM, Wan L, Younis I, et al. U1 snRNP regulates cancer cell migration and invasion in vitro. Nat Commun. 2020;11(1):1. https://doi.org/10.1038/s41467-019-13993-7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang L, Chen J, Gan L, Wang J, Dong S. Single-atom nanozymes. Sci Adv. 5(5):eaav5490. https://doi.org/10.1126/sciadv.aav5490.

  17. Hou H, Mao J, Han Y, Wu F, Zhang M, Wang D, et al. Single-atom electrocatalysis: a new approach to in vivo electrochemical biosensing. Sci China Chem. 2019;62(12):1720–4. https://doi.org/10.1007/s11426-019-9605-0.

    Article  CAS  Google Scholar 

  18. Lei Y, Butler D, Lucking MC, Zhang F, Xia T, Fujisawa K, et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: experimental and computational approach. Sci Adv. 2020;6(32):eabc4250. https://doi.org/10.1126/sciadv.abc4250.

  19. Xie X, Wang DP, Guo C, Liu Y, Rao Q, Lou F, et al. Single-atom ruthenium biomimetic enzyme for simultaneous electrochemical detection of dopamine and uric acid. Anal Chem. 2021;93(11):4916–23. https://doi.org/10.1021/acs.analchem.0c05191.

    Article  CAS  PubMed  Google Scholar 

  20. Long B, Zhao Y, Cao P, Wei W, Mo Y, Liu J, et al. Single-atom Pt boosting electrochemical nonenzymatic glucose sensing on Ni(OH)2/N-doped graphene. Anal Chem. 2022;94(4):1919–24. https://doi.org/10.1021/acs.analchem.1c04912.

    Article  CAS  PubMed  Google Scholar 

  21. Lin Z, Waller G, Liu Y, Liu M, Wong C-P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv Energy Mater. 2012;2(7):884–8. https://doi.org/10.1002/aenm.201200038.

    Article  CAS  Google Scholar 

  22. Zou Y, Wang Y. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale. 2011;3(6):2615–20. https://doi.org/10.1039/C1NR10070J.

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Ouyang W, Zeng D, Yu X, Xie F, Zhang W, Chen J, et al. Exploring the active sites of nitrogen-doped graphene as catalysts for the oxygen reduction reaction. Int J Hydrogen Energy. 2014;39(28):15996–6005. https://doi.org/10.1016/j.ijhydene.2014.01.045.

    Article  CAS  Google Scholar 

  24. Shukla AK, Kannan AM, Hegde MS, Gopalakrishnan J. Effect of counter cations on electrocatalytic activity of oxide pyrochlores towards oxygen reduction/evolution in alkaline medium: an electrochemical and spectroscopic study. J Power Sources. 1991;35(2):163–73. https://doi.org/10.1016/0378-7753(91)80033-T.

    Article  CAS  Google Scholar 

  25. Lu P, Yu J, Lei Y, Lu S, Wang C, Liu D, et al. Synthesis and characterization of nickel oxide hollow spheres–reduced graphene oxide–nafion composite and its biosensing for glucose. Sens Actuat B: Chem. 2015;208:90–8. https://doi.org/10.1016/j.snb.2014.10.140.

    Article  CAS  Google Scholar 

  26. Kunitski M, Eicke N, Huber P, Köhler J, Zeller S, Voigtsberger J, et al. Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nat Commun. 2019;10(1):1. https://doi.org/10.1038/s41467-018-07882-8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu J, Yin H, Cui Z, Qin D, Gong J, Nie Q. Amorphous Ni(OH)2/CQDs microspheres for highly sensitive non-enzymatic glucose detection prepared via CQDs induced aggregation process. Appl Surf Sci. 2017;420:323–30. https://doi.org/10.1016/j.apsusc.2017.05.129.

    Article  ADS  CAS  Google Scholar 

  28. Cui M-L, Chen Y-S, Xie Q-F, Yang D-P, Han M-Y. Synthesis, properties and applications of noble metal iridium nanomaterials. Coord Chem Rev. 2019;387:450–62. https://doi.org/10.1016/j.ccr.2018.12.008.

    Article  CAS  Google Scholar 

  29. Wang Q, Hong G, Liu Y, Hao J, Liu S. Dual enzyme-like activity of iridium nanoparticles and their applications for the detection of glucose and glutathione. RSC Adv. 2020;10(42):25209–13. https://doi.org/10.1039/D0RA05342B.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ci S, Huang T, Wen Z, Cui S, Mao S, Steeber DA, et al. Nickel oxide hollow microsphere for non-enzyme glucose detection. Biosens Bioelectron. 2014;54:251–7. https://doi.org/10.1016/j.bios.2013.11.006.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Changsheng Shan acknowledges the National Natural Science Foundation of China (grant Nos. 22274036 and 21874031) and “Chu-Tian Scholar” Program of Hubei Province. Yuanmeng Zhao thanks the National Natural Science Foundation of China (grant No. 22302059).

Author information

Authors and Affiliations

Authors

Contributions

Yaojiang Zhou: methodology, conceptualization, investigation, formal analysis, investigation, and writing, original draft. Wen Wei: methodology and investigation. Wenli Lei: methodology and investigation. Fudong Li: methodology and investigation. Jiaxi Shu: methodology and investigation. Zixuan Deng: methodology and investigation. Wenyu Hui: methodology and investigation. Yuanmeng Zhao: resources, discussion, and writing, review and editing. Changsheng Shan: methodology, conceptualization, resources, supervision, and writing, review and editing.

Corresponding author

Correspondence to Changsheng Shan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Nanozymes with guest editors Vipul Bansal, Sudipta Seal, and Hui Wei.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1583 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wei, W., Lei, W. et al. Synergistically enhancing electrocatalysis and non-enzymatic sensing for glucose by iridium single-atom/nickel oxide/N-doped graphene. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05226-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05226-8

Keywords

Navigation