Skip to main content
Log in

Development of a rapid-fire drug screening method by probe electrospray ionization tandem mass spectrometry for human urine (RaDPi-U)

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Drug screening tests are mandatory in the search for drugs in forensic biological samples, and immunological methods and mass spectrometry (e.g., gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry) are commonly used for that purpose. However, these methods have some drawbacks, and developing new screening methods is required. In this study, we develop a rapid-fire drug screening method by probe electrospray ionization tandem mass spectrometry (PESI-MS/MS), which is an ambient ionization mass spectrometry method, for human urine, named RaDPi-U. RaDPi-U is carried out in three steps: (1) mixing urine with internal standard (IS) solution and ethanol, followed by vortexing; (2) pipetting the mixture onto a sample plate for PESI; and (3) rapid-fire analysis by PESI-MS/MS. RaDPi-U targets 40 forensically important drugs, which include illegal drugs, hypnotics, and psychoactive substances. The analytical results were obtained within 3 min because of the above-mentioned simple workflow of RaDPi-U. The calibration curves of each analyte were constructed using the IS method, and they were quantitatively valid, resulting in good linearity (0.972–0.999) with a satisfactory lower limit of detection and lower limit of quantitation (0.01–7.1 ng/mL and 0.02–21 ng/mL, respectively). Further, both trueness and precisions were 28% or less, demonstrating the high reliability and repeatability of the method. Finally, we applied RaDPi-U to three postmortem urine specimens and successfully detected different drugs in each urine sample. The practicality of the method is proven, and RaDPi-U will be a strong tool as a rapid-fire drug screening method not only in forensic toxicology but also in clinical toxicology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schütz H, Paine A, Erdmann F, Weiler G, Verhoff MA. Immunoassays for drug screening in urine. Forensic Sci Med Pathol. 2006;2(2):75–83. https://doi.org/10.1385/FSMP:2:2:75.

    Article  PubMed  Google Scholar 

  2. DeRienz RT, Holler JM, Manos ME, Jemionek J, Past MR. Evaluation of four immunoassay screening kits for the detection of benzodiazepines in urine*. J Anal Toxicol. 2008;32(6):433–7. https://doi.org/10.1093/jat/32.6.433.

    Article  CAS  PubMed  Google Scholar 

  3. Papoutsis II, Athanaselis SA, Nikolaou PD, Pistos CM, Spiliopoulou CA, Maravelias CP. Development and validation of an EI–GC–MS method for the determination of benzodiazepine drugs and their metabolites in blood: applications in clinical and forensic toxicology. J Pharm Biomed Anal. 2010;52(4):609–14. https://doi.org/10.1016/j.jpba.2010.01.027.

    Article  CAS  PubMed  Google Scholar 

  4. Meyer MR, Peters FT, Maurer HH. Automated mass spectral deconvolution and identification system for GC-MS screening for drugs, poisons, and metabolites in urine. Clin Chem. 2010;56(4):575–84. https://doi.org/10.1373/clinchem.2009.135517.

    Article  CAS  PubMed  Google Scholar 

  5. Feng J, Wang L, Dai I, Harmon T, Bernert JT. Simultaneous determination of multiple drugs of abuse and relevant metabolites in urine by LC-MS-MS*. J Anal Toxicol. 2007;31(7):359–68. https://doi.org/10.1093/jat/31.7.359.

    Article  CAS  PubMed  Google Scholar 

  6. Vindenes V, Lund HME, Andresen W, Gjerde H, Ikdahl SE, Christophersen AS, et al. Detection of drugs of abuse in simultaneously collected oral fluid, urine and blood from Norwegian drug drivers. Forensic Sci Int. 2012;219(1):165–71. https://doi.org/10.1016/j.forsciint.2012.01.001.

    Article  CAS  PubMed  Google Scholar 

  7. Guale F, Shahreza S, Walterscheid JP, Chen H-H, Arndt C, Kelly AT, et al. Validation of LC–TOF-MS screening for drugs, metabolites, and collateral compounds in forensic toxicology specimens. J Anal Toxicol. 2012;37(1):17–24. https://doi.org/10.1093/jat/bks084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leporati M, Capra P, Brizio P, Ciccotelli V, Abete MC, Vincenti M. Fit-for-purpose in veterinary drug residue analysis: development and validation of an LC-MS/MS method for the screening of thirty illicit drugs in bovine urine. J Sep Sci. 2012;35(3):400–9. https://doi.org/10.1002/jssc.201100691.

    Article  CAS  PubMed  Google Scholar 

  9. Montenarh D, Hopf M, Maurer HH, Schmidt P, Ewald AH. Development and validation of a multi-analyte LC-MS/MS approach for quantification of neuroleptics in whole blood, plasma, and serum. Drug Test Anal. 2016;8(10):1080–9. https://doi.org/10.1002/dta.1923.

    Article  CAS  PubMed  Google Scholar 

  10. Punt AM, Stienstra NA, van Kleef MEA, Lafeber M, Spiering W, Blankestijn PJ, et al. Screening of cardiovascular agents in plasma with LC-MS/MS: a valuable tool for objective drug adherence assessment. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1121:103–10. https://doi.org/10.1016/j.jchromb.2019.05.013.

    Article  CAS  PubMed  Google Scholar 

  11. Giorgetti A, Barone R, Pelletti G, Garagnani M, Pascali J, Haschimi B, et al. Development and validation of a rapid LC-MS/MS method for the detection of 182 novel psychoactive substances in whole blood. Drug Test Anal. 2022;14(2):202–23. https://doi.org/10.1002/dta.3170.

    Article  CAS  PubMed  Google Scholar 

  12. Sofalvi S, Lavins ES, Kaspar CK, Michel HM, Mitchell-Mata CL, Huestis MA, et al. Development and validation of an LC–MS-MS method for the detection of 40 benzodiazepines and three Z-Drugs in blood and urine by solid-phase extraction. J Anal Toxicol. 2020;44(7):708–17. https://doi.org/10.1093/jat/bkaa072.

    Article  CAS  PubMed  Google Scholar 

  13. Kronstrand R, Nystrom I, Strandberg J, Druid H. Screening for drugs of abuse in hair with ion spray LC-MS-MS. Forensic Sci Int. 2004;145(2–3):183–90. https://doi.org/10.1016/j.forsciint.2004.04.034.

  14. Regester LE, Chmiel JD, Holler JM, Vorce SP, Levine B, Bosy TZ. Determination of designer drug cross-reactivity on five commercial immunoassay screening kits. J Anal Toxicol. 2014;39(2):144–51. https://doi.org/10.1093/jat/bku133.

    Article  CAS  PubMed  Google Scholar 

  15. Zaitsu K. Chapter 1 - Introduction to ambient ionization mass spectrometry. In: Zaitsu K, editor. Ambient ionization mass spectrometry in life sciences. Elsevier; 2019. p. 1–32.

  16. Huang M-Z, Cheng S-C, Cho Y-T, Shiea J. Ambient ionization mass spectrometry: a tutorial. Anal Chim Acta. 2011;702(1):1–15. https://doi.org/10.1016/j.aca.2011.06.017.

    Article  CAS  PubMed  Google Scholar 

  17. Feider CL, Krieger A, DeHoog RJ, Eberlin LS. Ambient ionization mass spectrometry: recent developments and applications. Anal Chem. 2019;91(7):4266–90. https://doi.org/10.1021/acs.analchem.9b00807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vasiljevic T, Gómez-Ríos GA, Pawliszyn J. Single-use Poly(etheretherketone) solid-phase microextraction-transmission mode devices for rapid screening and quantitation of drugs of abuse in oral fluid and urine via direct analysis in real-time tandem mass spectrometry. Anal Chem. 2018;90(1):952–60. https://doi.org/10.1021/acs.analchem.7b04005.

    Article  CAS  PubMed  Google Scholar 

  19. Jett R, Skaggs C, Manicke NE. Drug screening method development for paper spray coupled to a triple quadrupole mass spectrometer. Anal Methods. 2017;9(34):5037–43. https://doi.org/10.1039/C7AY01009E.

    Article  CAS  Google Scholar 

  20. Rydberg M, Dowling S, Manicke NE. Automated and high-throughput urine drug screening using paper spray mass spectrometry. J Anal Toxicol. 2022;00:1–7. https://doi.org/10.1093/jat/bkac053.

    Article  CAS  Google Scholar 

  21. Brown H, Oktem B, Windom A, Doroshenko V, Evans-Nguyen K. Direct Analysis in Real Time (DART) and a portable mass spectrometer for rapid identification of common and designer drugs on-site. Forensic Chem. 2016;1:66–73. https://doi.org/10.1016/j.forc.2016.07.002.

    Article  CAS  Google Scholar 

  22. Nie H, Li X, Hua Z, Pan W, Bai Y, Fu X. Rapid screening and determination of 11 new psychoactive substances by direct analysis in real time mass spectrometry and liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2016;30(S1):141–6. https://doi.org/10.1002/rcm.7629.

  23. Kennedy JH, Palaty J, Gill CG, Wiseman JM. Rapid analysis of fentanyls and other novel psychoactive substances in substance use disorder patient urine using paper spray mass spectrometry. Rapid Commun Mass Spectrom. 2018;32(15):1280–6. https://doi.org/10.1002/rcm.8164.

  24. McKenna J, Jett R, Shanks K, Manicke NE. Toxicological drug screening using paper spray high-resolution tandem mass spectrometry (HR-MS/MS). J Anal Toxicol. 2018;42(5):300–10. https://doi.org/10.1093/jat/bky001.

    Article  CAS  PubMed  Google Scholar 

  25. Bianchi F, Agazzi S, Riboni N, Erdal N, Hakkarainen M, Ilag LL, et al. Novel sample-substrates for the determination of new psychoactive substances in oral fluid by desorption electrospray ionization-high resolution mass spectrometry. Talanta. 2019;202:136–44. https://doi.org/10.1016/j.talanta.2019.04.057.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Zhang W, Xin G, Liu L, Duan X, Liu C. Rapid screening of nine illicit drugs in human blood and urine by direct analysis in real-time mass spectrometry. J Forensic Sci Med. 2019;5(3):136–40.

    Article  Google Scholar 

  27. Morato NM, Pirro V, Fedick PW, Cooks RG. Quantitative swab touch spray mass spectrometry for oral fluid drug testing. Anal Chem. 2019;91(11):7450–7. https://doi.org/10.1021/acs.analchem.9b01637.

    Article  CAS  PubMed  Google Scholar 

  28. Wiseman JM, Evans CA, Bowen CL, Kennedy JH. Direct analysis of dried blood spots utilizing desorption electrospray ionization (DESI) mass spectrometry. Analyst. 2010;135(4):720–5. https://doi.org/10.1039/b922329k

  29. Shamraeva MA, Bormotov DS, Shamarina EV, Bocharov KV, Peregudova OV, Pekov SI, et al. Spherical sampler probes enhance the robustness of ambient ionization mass spectrometry for rapid drugs screening. Molecules. 2022;27(3). https://www.ncbi.nlm.nih.gov/pubmed/35164211

  30. Zaitsu K, Hayashi Y, Murata T, Ohara T, Nakagiri K, Kusano M, et al. Intact endogenous metabolite analysis of mice liver by probe electrospray ionization/triple quadrupole tandem mass spectrometry and its preliminary application to in vivo real-time analysis. Anal Chem. 2016;88(7):3556–61. https://doi.org/10.1021/acs.analchem.5b04046.

    Article  CAS  PubMed  Google Scholar 

  31. Hayashi Y, Zaitsu K, Murata T, Ohara T, Moreau S, Kusano M, et al. Intact metabolite profiling of mouse brain by probe electrospray ionization/triple quadrupole tandem mass spectrometry (PESI/MS/MS) and its potential use for local distribution analysis of the brain. Anal Chim Acta. 2017;983:160–5. https://doi.org/10.1016/j.aca.2017.06.047.

    Article  CAS  PubMed  Google Scholar 

  32. Zaitsu K, Hayashi Y, Murata T, Yokota K, Ohara T, Kusano M, et al. In vivo real-time monitoring system using probe electrospray ionization/tandem mass spectrometry for metabolites in mouse brain. Anal Chem. 2018;90(7):4695–701. https://doi.org/10.1021/acs.analchem.7b05291.

    Article  CAS  PubMed  Google Scholar 

  33. Hisatsune K, Murata T, Ogata K, Hida M, Ishii A, Tsuchihashi H, et al. RECiQ: a rapid and easy method for determining cyanide intoxication by cyanide and 2-Aminothiazoline-4-carboxylic acid quantification in the human blood using probe electrospray ionization tandem mass spectrometry. ACS Omega. 2020;5(36):23351–7. https://doi.org/10.1021/acsomega.0c03229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zaitsu K, Eguchi S, Ohara T, Kondo K, Ishii A, Tsuchihashi H, et al. PiTMaP: a new analytical platform for high-throughput direct metabolome analysis by probe electrospray ionization/tandem mass spectrometry using an R software-based data pipeline. Anal Chem. 2020;92(12):8514–22. https://doi.org/10.1021/acs.analchem.0c01271.

    Article  CAS  PubMed  Google Scholar 

  35. Kawakami D, Tsuchiya M, Murata T, Iguchi A, Zaitsu K. Rapid quantification of extracellular neurotransmitters in mouse brain by PESI/MS/MS and longitudinal data analysis using the R and Stan-based Bayesian state-space model. Talanta. 2021;234: 122620. https://doi.org/10.1016/j.talanta.2021.122620.

    Article  CAS  PubMed  Google Scholar 

  36. Ishibashi M, Zaitsu K, Yoshikawa I, Otagaki S, Matsumoto S, Oikawa A, et al. High-throughput analysis of anthocyanins in horticultural crops using probe electrospray ionization tandem mass spectrometry (PESI/MS/MS). Hortic Res. 2023;10(4):uhad039. https://doi.org/10.1093/hr/uhad039.

  37. Hiraoka K, Nishidate K, Mori K, Asakawa D, Suzuki S. Development of probe electrospray using a solid needle. Rapid Commun Mass Spectrom. 2007;21(18):3139–44. https://doi.org/10.1002/rcm.3201.

  38. Usui K, Kobayashi H, Fujita Y, Kubota E, Hanazawa T, Yoshizawa T, et al. An ultra-rapid drug screening method for acetaminophen in blood serum based on probe electrospray ionization-tandem mass spectrometry. J Food Drug Anal. 2019;27(3):786–92. https://doi.org/10.1016/j.jfda.2019.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Usui K, Minami E, Fujita Y, Kubota E, Kobayashi H, Hanazawa T, et al. Application of probe electrospray ionization-tandem mass spectrometry to ultra-rapid determination of glufosinate and glyphosate in human serum. J Pharm Biomed Anal. 2019;174:175–81. https://doi.org/10.1016/j.jpba.2019.05.040.

    Article  CAS  PubMed  Google Scholar 

  40. Griffeuille P, Dulaurent S, Moreau S, Saint-Marcoux F. Driving under the influence of drugs: PESI for the measurement of illicit drugs in saliva. Column. 2021;17(05):13–7.

  41. Taniguchi M, Minatani T, Miyazaki H, Tsuchihashi H, Zaitsu K. A highly sensitive quantification method for 12 plant toxins in human serum using liquid chromatography tandem mass spectrometry with a quick solid-phase extraction technique. J Pharm Biomed Anal. 2021;192: 113676. https://doi.org/10.1016/j.jpba.2020.113676.

    Article  CAS  PubMed  Google Scholar 

  42. Taniguchi M, Takamura N, Watanabe T, Ishimaru R, Chinaka S, Miki A, et al. Easily operable quantification method of 21 plant-derived alkaloids in human serum by automatic sample preparation and liquid chromatography-tandem mass spectrometry. Chromatographia. 2022;85(12):1051–63. https://doi.org/10.1007/s10337-022-04212-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gómez-Ríos GA, Pawliszyn J. Development of coated blade spray ionization mass spectrometry for the quantitation of target analytes present in complex matrices. Angew Chem Int Ed. 2014;53(52):14503–7. https://doi.org/10.1002/anie.201407057.

  44. Thirukumaran M, Singh V, Arao Y, Fujito Y, Nishimura M, Ogura T, et al. Solid-phase microextraction- probe electrospray ionization devices for screening and quantitating drugs of abuse in small amounts of biofluids. Talanta. 2021;231:122317. https://doi.org/10.1016/j.talanta.2021.122317

  45. Zaitsu K, Eguchi S, Iguchi A. Bioinformatics and data science for mass spectrometry data analysis. Med Mass Spectrom. 2023;7(1):17–25.

    Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. Y. Hayashi, Ms. M. Shibata, and Ms. K. Furui for their assistance with data acquisition and sample preparation, and Dr. Issey Takahashi for making a great graphical abstract.

Author information

Authors and Affiliations

Authors

Contributions

Kazuaki Hisatsune: methodology, validation, formal analysis, investigation, data curation, writing — original draft, visualization. Tasuku Murata: methodology, validation, formal analysis, investigation, data curation. Masaru Taniguchi: investigation, writing — review and editing, visualization. Tomomi Asano: writing — review and editing, visualization. Koretsugu Ogata: methodology, validation, formal analysis, investigation, data curation. Akira Iguchi: data curation, writing — review and editing, visualization. Kei Zaitsu: conceptualization, methodology, writing — original draft, supervision, project administration, funding acquisition.

Corresponding authors

Correspondence to Kazuaki Hisatsune or Kei Zaitsu.

Ethics declarations

Ethics approval

This work was approved by the Ethics Committee of Nagoya University Graduate School of Medicine (approval number: 2017-0175).

Source of biological material

Postmortem urine samples were obtained from three anonymous drug abusers by autopsy with the approval of the Ethics Committee of Nagoya University Graduate School of Medicine (approval number: 2017-0175).

Competing interests

The authors declare are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 68 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hisatsune, K., Murata, T., Taniguchi, M. et al. Development of a rapid-fire drug screening method by probe electrospray ionization tandem mass spectrometry for human urine (RaDPi-U). Anal Bioanal Chem 416, 2503–2513 (2024). https://doi.org/10.1007/s00216-024-05215-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05215-x

Keywords

Navigation