Skip to main content
Log in

Recent developments and challenges in resistance-based hydrogen gas sensors based on metal oxide semiconductors

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In recent years, the energy crisis has made the world realize the importance and need for green energy. Hydrogen safety has always been a primary issue that needs to be addressed for the application and large-scale commercialization of hydrogen energy, and precise and rapid hydrogen gas sensing technology and equipment are important prerequisites for ensuring hydrogen safety. Based on metal oxide semiconductors (MOS), resistive hydrogen gas sensors (HGS) offer advantages, such as low cost, low power consumption, and high sensitivity. They are also easy to test, integrate, and suitable for detecting low concentrations of hydrogen gas in ambient air. Therefore, they are considered one of the most promising HGS. This article provides a comprehensive review of the surface reaction mechanisms and recent research progress in optimizing the gas sensing performance of MOS-based resistive hydrogen gas sensors (MOS-R-HGS). Particularly, the advancements in metal-assisted or doped MOS, mixed metal oxide (MO)-MOS composites, MOS-carbon composites, and metal-organic framework-derived (MOF)-MOS composites are extensively summarized. Finally, the future research directions and possibilities in this field are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu PK, Han X. Comparative analysis on similarities and differences of hydrogen energy development in the world’s top 4 largest economies: a novel framework. Int J Hydrogen Energy. 2022;47(16):9485–503. https://doi.org/10.1016/j.ijhydene.2022.01.038.

  2. Wang J, Singh B, Park J-H, Rathi S, Lee I-y, Maeng S, et al. Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature. Sens Actuators B Chem. 2014;194:296-302. https://doi.org/10.1016/j.snb.2013.12.009.

  3. Darmadi I, Nugroho FAA, Langhammer C. High-performance nanostructured palladium-based hydrogen sensors—current limitations and strategies for their mitigation. ACS Sensors. 2020;5(11):3306–27. https://doi.org/10.1021/acssensors.0c02019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Buttner WJ, Post MB, Burgess R, Rivkin C. An overview of hydrogen safety sensors and requirements. Int J Hydrogen Energy. 2011;36(3):2462–70. https://doi.org/10.1016/j.ijhydene.2010.04.176.

    Article  CAS  Google Scholar 

  5. Chauhan PS, Bhattacharya S. Hydrogen gas sensing methods, materials, and approach to achieve parts per billion level detection: a review. Int J Hydrogen Energy. 2019;44(47):26076–99. https://doi.org/10.1016/j.ijhydene.2019.08.052.

    Article  CAS  Google Scholar 

  6. Kim SM, Kim HJ, Jung HJ, Park JY, Seok TJ, Choa YH, et al. High-performance, transparent thin film hydrogen gas sensor using 2D electron gas at interface of oxide thin film heterostructure grown by atomic layer deposition. Adv Funct Mater. 2018;29(7):1807760. https://doi.org/10.1002/adfm.201807760.

    Article  CAS  Google Scholar 

  7. Choi MS, Bang JH, Mirzaei A, Na HG, Jin C, Oum W, et al. Exploration of the use of p-TeO2-branch/n-SnO2 core nanowires nanocomposites for gas sensing. Appl Surf Sci. 2019;484:1102–10. https://doi.org/10.1016/j.apsusc.2019.04.122.

    Article  ADS  CAS  Google Scholar 

  8. Hussain A, Zhang X, Shi Y, Bushira FA, Barkae TH, Ji K, et al. Generation of oxygen vacancies in metal–organic framework-derived one-dimensional Ni0.4Fe2.6O4 nanorice heterojunctions for ppb-level diethylamine gas sensing. Anal Chem. 2023;95(2):1747-54. https://doi.org/10.1021/acs.analchem.2c05119.

  9. Andre RS, Pereira JC, Mercante LA, Locilento D, Mattoso LHC, Correa DS. ZnO-Co3O4 heterostructure electrospun nanofibers modified with poly(sodium 4-styrenesulfonate): evaluation of humidity sensing properties. J Alloys Compd. 2018;767:1022–9. https://doi.org/10.1016/j.jallcom.2018.07.132.

    Article  CAS  Google Scholar 

  10. Yu H, Gao S, Cheng X, Wang P, Zhang X, Xu Y, et al. Morphology controllable Fe2O3 nanostructures derived from Fe-based metal-organic frameworks for enhanced humidity sensing performances. Sens Actuators B Chem. 2019;297: 126744. https://doi.org/10.1016/j.snb.2019.12674411.

    Article  CAS  Google Scholar 

  11. Suematsu K, Yuasa M, Kida T, Yamazoe N, Shimanoe K. Determination of oxygen adsorption species on SnO2: exact analysis of gas sensing properties using a sample gas pretreatment system. J Electrochem Soc. 2014;161(6):B123–8. https://doi.org/10.1149/2.004406jes.

    Article  CAS  Google Scholar 

  12. Suematsu K, Sasaki M, Ma N, Yuasa M, Shimanoe K. Antimony-doped tin dioxide gas sensors exhibiting high stability in the sensitivity to humidity changes. ACS Sensors. 2016;1(7):913–20. https://doi.org/10.1021/acssensors.6b00323.

    Article  CAS  Google Scholar 

  13. Nakate UT, Lee GH, Ahmad R, Patil P, Bhopate DP, Hahn YB, et al. Hydrothermal synthesis of p-type nanocrystalline NiO nanoplates for high response and low concentration hydrogen gas sensor application. Ceram Int. 2018;44(13):15721–9. https://doi.org/10.1016/j.ceramint.2018.05.246.

    Article  CAS  Google Scholar 

  14. Hussain A, Lou B, Bushira FA, Xia S, Liu F, Guan Y, et al. Ultrafast response and high selectivity of diethylamine gas sensors at room temperature using MOF-derived 1D CuO nano-ellipsoids. Anal Chem. 2023;95(48):17568–76. https://doi.org/10.1021/acs.analchem.3c02890.

    Article  CAS  PubMed  Google Scholar 

  15. Hussain A, Zhang X, Shi Y, Bushira FA, Chen Y, Zhang W, et al. Oxygen vacancies induced by Pd doping in Ni-P2O5/MoO3 hollow polyhedral heterostructures for highly efficient diethylamine gas sensing. Anal Chem. 2022;94(44):15359–66. https://doi.org/10.1021/acs.analchem.2c03062.

    Article  CAS  PubMed  Google Scholar 

  16. Hu J, Sun Y, Xue Y, Zhang M, Li P, Lian K, et al. Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sens Actuators B Chem. 2018;257:124–35. https://doi.org/10.1016/j.snb.2017.10.139.

    Article  CAS  Google Scholar 

  17. Yao MS, Tang WX, Wang GE, Nath B, Xu G. MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv Mater. 2016;28(26):5229–34. https://doi.org/10.1002/adma.201506457.

    Article  CAS  PubMed  Google Scholar 

  18. Kim J-H, Lee J-H, Park Y, Kim J-Y, Mirzaei A, Kim HW, et al. Toluene- and benzene-selective gas sensors based on Pt- and Pd-functionalized ZnO nanowires in self-heating mode. Sens Actuators B Chem. 2019;294:78–88. https://doi.org/10.1016/j.snb.2019.05.032.

    Article  CAS  Google Scholar 

  19. Ortiz-Casas B, Galdámez-Martínez A, Gutiérrez-Flores J, Baca Ibañez A, Kumar Panda P, Santana G, et al. Bio-acceptable 0D and 1D ZnO nanostructures for cancer diagnostics and treatment. Mater Today. 2021;50:533–69. https://doi.org/10.1016/j.mattod.2021.07.025.

    Article  CAS  Google Scholar 

  20. Wang S, Wang X, Qiao G, Chen X, Wang X, Cui H. Core-double shell ZnO@In2O3@ZnO hollow microspheres for superior ethanol gas sensing. Sens Actuators B Chem. 2021;341: 130002. https://doi.org/10.1016/j.snb.2021.130002.

    Article  CAS  Google Scholar 

  21. Mishra YK, Adelung R. ZnO tetrapod materials for functional applications. Mater Today. 2018;21(6):631–51. https://doi.org/10.1016/j.mattod.2017.11.003.

    Article  CAS  Google Scholar 

  22. Agarwal S, Kumar S, Agrawal H, Moinuddin MG, Kumar M, Sharma SK, et al. An efficient hydrogen gas sensor based on hierarchical Ag/ZnO hollow microstructures. Sens Actuators B Chem. 2021;346: 130510. https://doi.org/10.1016/j.snb.2021.130510.

    Article  CAS  Google Scholar 

  23. Gröttrup J, Paulowicz I, Schuchardt A, Kaidas V, Kaps S, Lupan O, et al. Three-dimensional flexible ceramics based on interconnected network of highly porous pure and metal alloyed ZnO tetrapods. Ceram Int. 2016;42(7):8664–76. https://doi.org/10.1016/j.ceramint.2016.02.099.

    Article  CAS  Google Scholar 

  24. Lupan O, Postica V, Labat F, Ciofini I, Pauporté T, Adelung R. Ultra-sensitive and selective hydrogen nanosensor with fast response at room temperature based on a single Pd/ZnO nanowire. Sens Actuators B Chem. 2018;254:1259–70. https://doi.org/10.1016/j.snb.2017.07.200.

    Article  CAS  Google Scholar 

  25. Kim H, Pak Y, Jeong Y, Kim W, Kim J, Jung GY. Amorphous Pd-assisted H2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability. Sens Actuators B Chem. 2018;262:460–8. https://doi.org/10.1016/j.snb.2018.02.025.

    Article  CAS  Google Scholar 

  26. Lupan O, Postica V, Wolff N, Su J, Labat F, Ciofini I, et al. Low-temperature solution synthesis of Au-modified ZnO nanowires for highly efficient hydrogen nanosensors. ACS Appl Mater Interfaces. 2019;11(35):32115–26. https://doi.org/10.1021/acsami.9b08598.

    Article  CAS  PubMed  Google Scholar 

  27. Li T, Zhou P, Zhao S, Han C, Wei D, Shen Y, et al. NH3 sensing performance of Pt-doped WO3·0.33H2O microshuttles induced from scheelite leaching solution. Vacuum. 2021;184:109936. https://doi.org/10.1016/j.vacuum.2020.109936.

  28. Liu B, Cai D, Liu Y, Wang D, Wang L, Wang Y, et al. Improved room-temperature hydrogen sensing performance of directly formed Pd/WO3 nanocomposite. Sens Actuators B Chem. 2014;193:28–34. https://doi.org/10.1016/j.snb.2013.11.057.

    Article  CAS  Google Scholar 

  29. Boudjahem A-G, Bettahar MM. Effect of oxidative pre-treatment on hydrogen spillover for a Ni/SiO2 catalyst. J Mol Catal A Chem. 2017;426:190–7. https://doi.org/10.1016/j.molcata.2016.11.014.

    Article  CAS  Google Scholar 

  30. Drmosh QA, Yamani ZH. Hydrogen sensing properties of sputtered ZnO films decorated with Pt nanoparticles. Ceram Int. 2016;42(10):12378–84. https://doi.org/10.1016/j.ceramint.2016.05.011.

    Article  CAS  Google Scholar 

  31. Kumar S, Lawaniya SD, Agarwal S, Yu Y-T, Nelamarri SR, Kumar M, et al. Optimization of Pt nanoparticles loading in ZnO for highly selective and stable hydrogen gas sensor at reduced working temperature. Sens Actuators B Chem. 2023;375: 132943. https://doi.org/10.1016/j.snb.2022.132943.

    Article  CAS  Google Scholar 

  32. Dong H-D, Zhao J-P, Peng M-X, Zhang Y-H, Xu P-Y. Au-modified spindle ZnO for high efficiency H2 sensors. Vacuum. 2023;207: 111597. https://doi.org/10.1016/j.vacuum.2022.111597.

    Article  ADS  CAS  Google Scholar 

  33. Liu Y, Hang T, Xie Y, Bao Z, Song J, Zhang H, et al. Effect of Mg doping on the hydrogen-sensing characteristics of ZnO thin films. Sens Actuators B Chem. 2011;160(1):266–70. https://doi.org/10.1016/j.snb.2011.07.046.

    Article  CAS  Google Scholar 

  34. Yang X, Wang W, Xiong J, Chen L, Ma Y. ZnO: Cd nanorods hydrogen sensor with low operating temperature. Int J Hydrogen Energy. 2015;40(36):12604–9. https://doi.org/10.1016/j.ijhydene.2015.07.086.

    Article  CAS  Google Scholar 

  35. Pati S, Banerji P, Majumder SB. Properties of indium doped nanocrystalline ZnO thin films and their enhanced gas sensing performance. RSC Adv. 2015;5(75):61230–8. https://doi.org/10.1039/c5ra10919a.

    Article  ADS  CAS  Google Scholar 

  36. Lee J-H, Kim J-H, Kim J-Y, Mirzaei A, Kim HW, Kim SS. ppb-level selective hydrogen gas detection of Pd-functionalized In2O3-loaded ZnO nanofiber gas sensors. Sensors. 2019;19(19). https://doi.org/10.3390/s19194276.

  37. Kim J-H, Mirzaei A, Woo Kim H, Kim SS. Combination of Pd loading and electron beam irradiation for superior hydrogen sensing of electrospun ZnO nanofibers. Sens Actuators B Chem. 2019;284:628–37. https://doi.org/10.1016/j.snb.2018.12.120.

    Article  CAS  Google Scholar 

  38. Luo Y, Zhang C. Pt-activated TiO2-MoS2 nanocomposites for H2 detection at low temperature. J Alloys Compd. 2018;747:550–7. https://doi.org/10.1016/j.jallcom.2018.03.068.

    Article  CAS  Google Scholar 

  39. Cho NG, Whitfield GC, Kim H-G, Tuller HL, Kim I-D. Facile synthesis of Pt-functionalized SnO2 hollow hemispheres and their gas sensing properties. J Electrochem Soc. 2010;157(12):J435. https://doi.org/10.1149/1.3489949.

    Article  CAS  Google Scholar 

  40. Lu Z, Zhou Q, Xu L, Gui Y, Zhao Z, Tang C, et al. Synthesis and characterization of highly sensitive hydrogen (H2) sensing device based on Ag doped SnO2 nanospheres. Materials. 2018;11(4). https://doi.org/10.3390/ma11040492.

  41. Jaballah S, Dahman H, Neri G, El Mir L. Effect of Al and Mg Co-doping on the microstructural and gas-sensing characteristics of ZnO nanoparticles. J Inorg Organomet Polym Mater. 2020;31(4):1653–67. https://doi.org/10.1007/s10904-020-01796-z.

    Article  CAS  Google Scholar 

  42. Kim J-H, Mirzaei A, Osada M, Kim HW, Kim SS. Hydrogen sensing characteristics of Pd-decorated ultrathin ZnO nanosheets. Sens Actuators B Chem. 2021;329: 129222. https://doi.org/10.1016/j.snb.2020.129222.

    Article  CAS  Google Scholar 

  43. Reddy YVM, Shin JH, Palakollu VN, Sravani B, Choi C-H, Park K, et al. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Adv Colloid Interface Sci. 2022;304: 102664. https://doi.org/10.1016/j.cis.2022.102664.

    Article  CAS  PubMed  Google Scholar 

  44. Nguyen TTD, Dao DV, Kim D-S, Lee H-J, Oh S-Y, Lee I-H, et al. Effect of core and surface area toward hydrogen gas sensing performance using Pd@ZnO core-shell nanoparticles. J Colloid Interface Sci. 2021;587:252–9. https://doi.org/10.1016/j.jcis.2020.12.017.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Meng X, Bi M, Gao W. Rapid response hydrogen sensor based on Pd@Pt/SnO2 hybrids at near-ambient temperature. Sens Actuators B Chem. 2022;370: 132406. https://doi.org/10.1016/j.snb.2022.132406.

    Article  CAS  Google Scholar 

  46. Meng X, Bi M, Xiao Q, Gao W. Rapid detection of low concentration H2 using Au@Pd/SnO2 nanocomposites. Sens Actuators B Chem. 2022;366: 131971. https://doi.org/10.1016/j.snb.2022.131971.

    Article  CAS  Google Scholar 

  47. Meng X, Bi M, Gao W. PdAg alloy modified SnO2 nanoparticles for ultrafast detection of hydrogen. Sens Actuators B Chem. 2023;382: 133515. https://doi.org/10.1016/j.snb.2023.133515.

    Article  CAS  Google Scholar 

  48. Huang J, Li J, Zhang Z, Li J, Cao X, Tang J, et al. Bimetal Ag NP and Au NC modified In2O3 for ultra-sensitive detection of ppb-level HCHO. Sens Actuators B Chem. 2022;373: 132664. https://doi.org/10.1016/j.snb.2022.132664.

    Article  CAS  Google Scholar 

  49. Fournier C, Rajoua K, Doublet M-L, Favier F. Palladium–silver mesowires for the extended detection of H2. ACS Appl Mater Interfaces. 2013;5(2):310–8. https://doi.org/10.1021/am302143m.

    Article  CAS  PubMed  Google Scholar 

  50. Sonwane CG, Wilcox J, Ma YH. Achieving optimum hydrogen permeability in PdAg and PdAu alloys. J Chem Phys. 2006;125(18): 184714. https://doi.org/10.1063/1.2387166.

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Yu Y-T, Dutta P. Examination of Au/SnO2 core-shell architecture nanoparticle for low temperature gas sensing applications. Sens Actuators B Chem. 2011;157(2):444–9. https://doi.org/10.1016/j.snb.2011.04.088.

    Article  CAS  Google Scholar 

  52. Dao DV, Nguyen TTD, Uthirakumar P, Cho Y-H, Kim G-C, Yang J-K, et al. Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement. Appl Catal B Environ. 2021;286: 119947. https://doi.org/10.1016/j.apcatb.2021.119947.

    Article  CAS  Google Scholar 

  53. Rai P, Yoon J-W, Kwak C-H, Lee J-H. Role of Pd nanoparticles in gas sensing behaviour of Pd@In2O3 yolk–shell nanoreactors. J Mater Chem A. 2016;4(1):264–9. https://doi.org/10.1039/c5ta08873a.

    Article  CAS  Google Scholar 

  54. Majhi SM, Rai P, Yu Y-T. Facile approach to synthesize Au@ZnO core–shell nanoparticles and their application for highly sensitive and selective gas sensors. ACS Appl Mater Interfaces. 2015;Interfaces 7:9462–8. https://doi.org/10.1021/acsami.5b00055.

  55. Nguyen TTD, Dao DV, Thi Thu Ha N, Van Tran T, Kim D-S, Yoon J-W, et al. Superhigh sensing response and selectivity for hydrogen gas using PdPt@ZnO core-shell nanoparticles: unique effect of alloyed ingredient from experimental and theoretical investigations. Sens Actuators B Chem. 2022;354:131083. https://doi.org/10.1016/j.snb.2021.131083.

  56. Le H-J, Van Dao D, Yu Y-T. Superfast and efficient hydrogen gas sensor using PdAualloy@ZnO core–shell nanoparticles. J Mater Chem A. 2020;8(26):12968–74. https://doi.org/10.1039/d0ta03552a.

    Article  CAS  Google Scholar 

  57. Van Tran T, Ahemad MJ, Kim DS, Le TD, Dao V, Yu YT. Ultra high response for hydrogen gas on Pd–Augr-alloy@ZnO core-shell nanoparticles with Pd–Au gradient composition alloy core. Mater Today Nano. 2023;21: 100292. https://doi.org/10.1016/j.mtnano.2022.100292.

    Article  CAS  Google Scholar 

  58. Li Z, Liu X, Zhou M, Zhang S, Cao S, Lei G, et al. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine. J Hazard Mater. 2021;415: 125757. https://doi.org/10.1016/j.jhazmat.2021.125757.

    Article  CAS  PubMed  Google Scholar 

  59. Cheng IK, Lin C-Y, Pan F-M. Gas sensing behavior of ZnO toward H2 at temperatures below 300°C and its dependence on humidity and Pt-decoration. Appl Surf Sci. 2021;541: 148551. https://doi.org/10.1016/j.apsusc.2020.148551.

    Article  CAS  Google Scholar 

  60. Li G, Cheng Z, Xiang Q, Yan L, Wang X, Xu J. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens Actuators B Chem. 2019;283:590–601. https://doi.org/10.1016/j.snb.2018.09.117.

    Article  CAS  Google Scholar 

  61. Chen X, Shen Y, Zhou P, Zhong X, Li G, Han C, et al. Bimetallic Au/Pd nanoparticles decorated ZnO nanowires for NO2 detection. Sens Actuators B Chem. 2019;289:160–8. https://doi.org/10.1016/j.snb.2019.03.095.

    Article  CAS  Google Scholar 

  62. Meng Z, Aykanat A, Mirica KA. Welding metallophthalocyanines into bimetallic molecular meshes for ultrasensitive, low-power chemiresistive detection of gases. J Am Chem Soc. 2018;141(5):2046–53. https://doi.org/10.1021/jacs.8b11257.

    Article  CAS  Google Scholar 

  63. Nair KG, Ramakrishnan V, Unnathpadi R, Karuppanan KK, Pullithadathil B. Unraveling hydrogen adsorption kinetics of bimetallic Au–Pt nanoisland-functionalized carbon nanofibers for room-temperature gas sensor applications. J Phys Chem C. 2020;124(13):7144–55. https://doi.org/10.1021/acs.jpcc.9b11147.

    Article  CAS  Google Scholar 

  64. Bai J, Luo Y, An B, Wang Q, Cheng X, Li J, et al. Ni/Au bimetal decorated In2O3 nanotubes for ultra-sensitive ethanol detection. Sens Actuators B Chem. 2020;311: 127938. https://doi.org/10.1016/j.snb.2020.127938.

    Article  CAS  Google Scholar 

  65. Bai J, Luo Y, Chen C, Deng Y, Cheng X, An B, et al. Functionalization of 1D In2O3 nanotubes with abundant oxygen vacancies by rare earth dopant for ultra-high sensitive ethanol detection. Sens Actuators B Chem. 2020;324: 128755. https://doi.org/10.1016/j.snb.2020.128755.

    Article  CAS  Google Scholar 

  66. Bai J, Kong Y, Liu Z, Yang H, Li M, Xu D, et al. Ag modified Tb-doped double-phase In2O3 for ultrasensitive hydrogen gas sensor. Appl Surf Sci. 2022;583: 152521. https://doi.org/10.1016/j.apsusc.2022.152521.

    Article  CAS  Google Scholar 

  67. Wang B, Sun L, Schneider-Ramelow M, Lang K-D, Ngo H-D. Recent advances and challenges of nanomaterials-based hydrogen sensors. Micromachines. 2021;12(11):1429. https://doi.org/10.3390/mi12111429.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhao Y, Wang S, Yuan W, Fan S, Hua Z, Wu Y, et al. Selective detection of methane by Pd-In2O3 sensors with a catalyst filter film. Sens Actuators B Chem. 2021;328: 129030. https://doi.org/10.1016/j.snb.2020.129030.

    Article  CAS  Google Scholar 

  69. Majhi SM, Lee H-J, Choi H-N, Cho H-Y, Kim J-S, Lee C-R, et al. Construction of novel hybrid PdO–ZnO p–n heterojunction nanostructures as a high-response sensor for acetaldehyde gas. CrystEngComm. 2019;21(34):5084–94. https://doi.org/10.1039/c9ce00710e.

    Article  CAS  Google Scholar 

  70. Cao Y, Zhou C, Chen Y, Qin H, Hu J. Enhanced CO sensing performances of PdO/WO3 determined by heterojunction structure under illumination. ACS Omega. 2020;5(44):28784–92. https://doi.org/10.1021/acsomega.0c04137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Agarwal S, Ahemad MJ, Kumar S, Van Dung D, Rai P, Kumar M, et al. Enhanced hydrogen sensing performances of PdO nanoparticles-decorated ZnO flower-like nanostructures. J Alloys Compd. 2022;900: 163545. https://doi.org/10.1016/j.jallcom.2021.163545.

    Article  CAS  Google Scholar 

  72. Huang B-R, Lin J-C. Core–shell structure of zinc oxide/indium oxide nanorod based hydrogen sensors. Sens Actuators B Chem. 2012;174:389–93. https://doi.org/10.1016/j.snb.2012.08.065.

    Article  CAS  Google Scholar 

  73. Lee J-H, Kim J-Y, Kim J-H, Kim S. Enhanced hydrogen detection in ppb-level by electrospun SnO2-loaded ZnO nanofibers. Sensors. 2019;19(3). https://doi.org/10.3390/s19030726.

  74. Lee J-H, Kim J-Y, Kim J-H, Mirzaei A, Kim HW, Kim SS. Co3O4-loaded ZnO nanofibers for excellent hydrogen sensing. Int J Hydrogen Energy. 2019;44(50):27499–510. https://doi.org/10.1016/j.ijhydene.2019.08.226.

    Article  CAS  Google Scholar 

  75. Yu A, Xun H, Yi J. Improving hydrogen sensing performance of TiO2 nanotube arrays by ZnO modification. Front Mater. 2019;6. https://doi.org/10.3389/fmats.2019.00070.

  76. Xu Z, Liu H, Tong X, Shen W, Chen X, Bloch J-F. A low operating temperature and high performance sensor for H2S detection based on α-Fe2O3/TiO2 heterojunction nanoparticles composite. J Mater Sci Mater Electron. 2019;30(13):12695–709. https://doi.org/10.1007/s10854-019-01634-0.

    Article  CAS  Google Scholar 

  77. Alev O, Kılıç A, Çakırlar Ç, Büyükköse S, Öztürk Z. Gas sensing properties of p-Co3O4/n-TiO2 nanotube heterostructures. Sensors. 2018;18(4):956. https://doi.org/10.3390/s18040956.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Meng F, Wang H, Yuan Z, Zhang R, Li J. Ppb-level triethylamine gas sensors based on palladium nanoparticles modified flower-like In2O3 grown on rGO nanosheets operating at low temperature. IEEE Trans Instrum Meas. 2022;71:1–9. https://doi.org/10.1109/tim.2022.3189731.

    Article  CAS  Google Scholar 

  79. Cai Z, Park S. Ultrasensitive hydrogen sensor based on porous-structured Pd-decorated In2O3 nanoparticle-embedded SnO2 nanofibers. Sens Actuators B Chem. 2022;367: 132090. https://doi.org/10.1016/j.snb.2022.132090.

    Article  CAS  Google Scholar 

  80. Yuan Z, Zhang H, Li J, Meng F, Yang Z, Zhang H. Ag nanoparticle-modified ZnO–In2O3 nanocomposites for low-temperature rapid detection hydrogen gas sensors. IEEE Trans Instrum Meas. 2023;72:1–12. https://doi.org/10.1109/tim.2023.3243681.

    Article  CAS  Google Scholar 

  81. Jeong J, Lee J-W, Lee J, Shin K, Lee H-S, Lee W. Highly stable and reversible hydrogen sensors using Pd-coated SnO2 nanorods and an electrode–substrate interface as a parallel conduction channel. Sens Actuators B Chem. 2023;394: 134350. https://doi.org/10.1016/j.snb.2023.134350.

    Article  CAS  Google Scholar 

  82. Lee J-H, Katoch A, Choi S-W, Kim J-H, Kim HW, Kim SS. Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p–n heterojunctions by loading reduced graphene oxide nanosheets. ACS Appl Mater Interfaces. 2015;7(5):3101–9. https://doi.org/10.1021/am5071656.

    Article  CAS  PubMed  Google Scholar 

  83. Van Quang V, Van Dung N, Sy Trong N, Duc Hoa N, Van Duy N, Van Hieu N. Outstanding gas-sensing performance of graphene/SnO2 nanowire Schottky junctions. Appl Phys Lett. 2014;105(1): 013107. https://doi.org/10.1063/1.4887486.

    Article  ADS  CAS  Google Scholar 

  84. Bae G, Jeon IS, Jang M, Song W, Myung S, Lim J, et al. Complementary dual-channel gas sensor devices based on a role-allocated ZnO/graphene hybrid heterostructure. ACS Appl Mater Interfaces. 2019;11(18):16830–7. https://doi.org/10.1021/acsami.9b01596.

    Article  CAS  PubMed  Google Scholar 

  85. Peng Y, Zheng L, Zou K, Li C. Enhancing performances of a resistivity-type hydrogen sensor based on Pd/SnO2/RGO nanocomposites. Nanotechnology. 2017;28(21): 215501. https://doi.org/10.1088/1361-6528/aa6a96.

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Lo Nigro R, Schilirò E, Greco G, Fiorenza P, Roccaforte F. Laminated Al2O3–HfO2 layers grown by atomic layer deposition for microelectronics applications. Thin Solid Films. 2016;601:68–72. https://doi.org/10.1016/j.tsf.2015.11.037.

    Article  ADS  CAS  Google Scholar 

  87. Zhang X-Y, Ren Q, Wang C, Zhu L, Ding W-J, Cao Y-Q, et al. Atomic layer deposited SnO2/ZnO composite thin film sensors with enhanced hydrogen sensing performance. Appl Surf Sci. 2023;639: 157973. https://doi.org/10.1016/j.apsusc.2023.157973.

    Article  CAS  Google Scholar 

  88. Das S, Mojumder S, Saha D, Pal M. Influence of major parameters on the sensing mechanism of semiconductor metal oxide based chemiresistive gas sensors: a review focused on personalized healthcare. Sens Actuators B Chem. 2022;352: 131066. https://doi.org/10.1016/j.snb.2021.131066.

    Article  CAS  Google Scholar 

  89. Moon WJ, Yu JH, Choi GM. The CO and H2 gas selectivity of CuO-doped SnO2–ZnO composite gas sensor. Sens Actuators B Chem. 2002;87:464–70. https://doi.org/10.1016/S0925-4005(02)00299-X.

    Article  CAS  Google Scholar 

  90. Choi U. Sensing properties of SnO2–Co3O4 composites to CO and H2. Sens Actuators B Chem. 2004;98(2–3):166–73. https://doi.org/10.1016/j.snb.2003.09.033.

    Article  CAS  Google Scholar 

  91. Panda D, Nandi A, Datta SK, Saha H, Majumdar S. Selective detection of carbon monoxide (CO) gas by reduced graphene oxide (rGO) at room temperature. RSC Adv. 2016;6(53):47337–48. https://doi.org/10.1039/c6ra06058g.

    Article  ADS  CAS  Google Scholar 

  92. Zhang H, Wei W, Tao T, Li X, Xia X, Bao Y, et al. Hierarchical NiO/TiO2 heterojuntion-based conductometric hydrogen sensor with anti-CO-interference. Sens Actuators B Chem. 2023;380: 133321. https://doi.org/10.1016/j.snb.2023.133321.

    Article  CAS  Google Scholar 

  93. Wang Z, Deng M, Xia X, Gao Y, Shao G. Fundamental basis for distinctive sensing of H2 in humid environment. Energy Environ Mater. 2018;1(3):174–8. https://doi.org/10.1002/eem2.12015.

    Article  CAS  Google Scholar 

  94. Song B-Y, Li C, Lv M-S, Zhang X-F, Chen G-L, Deng Z-P, et al. Graphitic carbon-doped SnO2 nanosheets-wrapped tubes for chemiresitive ppb-level nitric oxide sensors operated near room temperature. Sens Actuators B Chem. 2023;374: 132822. https://doi.org/10.1016/j.snb.2022.132822.

    Article  CAS  Google Scholar 

  95. Hussain A, Lakhan MN, Soomro IA, Ahmed M, Hanan A, Maitlo AA, et al. Preparation of reduced graphene oxide decorated two-dimensional WSe2 nanosheet sensor for efficient detection of ethanol gas. Phys E Low-Dimens Syst Nanostructures. 2023;147: 115574. https://doi.org/10.1016/j.physe.2022.115574.

    Article  CAS  Google Scholar 

  96. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9. https://doi.org/10.1126/science.1102896.

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci. 2005;102(30):10451–3. https://doi.org/10.1073/pnas.0502848102.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS. Graphene-based ultracapacitors. Nano Lett. 2008(8):3498–502. https://doi.org/10.1021/nl802558y.

  99. Zheng M, Takei K, Hsia B, Fang H, Zhang X, Ferralis N, et al. Metal-catalyzed crystallization of amorphous carbon to graphene. Appl Phys Lett. 2010;96(6): 063110. https://doi.org/10.1063/1.3318263.

    Article  ADS  CAS  Google Scholar 

  100. Zheng C, Zhang X, Zhou Z, Hu Z. A first-principles study on the electrochemical reaction activity of 3d transition metal single-atom catalysts in nitrogen-doped graphene: trends and hints. eScience. 2022;2(2):219-226. https://doi.org/10.1016/j.esci.2022.02.009

  101. Bai H, Li C, Shi G. Functional composite materials based on chemically converted graphene. Adv Mater. 2011;23(9):1089–115. https://doi.org/10.1002/adma.201003753.

    Article  CAS  PubMed  Google Scholar 

  102. Tiwari SK, Sahoo S, Wang N, Huczko A. Graphene research and their outputs: status and prospect. J Sci Adv Mater Devices. 2020;5(1):10–29. https://doi.org/10.1016/j.jsamd.2020.01.006.

    Article  Google Scholar 

  103. Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol. 2008;3(5):270–4. https://doi.org/10.1038/nnano.2008.83.

    Article  CAS  PubMed  Google Scholar 

  104. Yavari F, Koratkar N. Graphene-based chemical sensors. J Phys Chem Lett. 2012;3(13):1746–53. https://doi.org/10.1021/jz300358t.

    Article  CAS  PubMed  Google Scholar 

  105. Wang C, Wang Y, Yang Z, Hu N. Review of recent progress on graphene-based composite gas sensors. Ceram Int. 2021;47(12):16367–84. https://doi.org/10.1016/j.ceramint.2021.02.144.

    Article  CAS  Google Scholar 

  106. Hussain Shar A, Nazim Lakhan M, Tawfik Alali K, Liu J, Ahmed M, Hussain Shah A, et al. Facile synthesis of reduced graphene oxide encapsulated selenium nanoparticles prepared by hydrothermal method for acetone gas sensors. Chem Phys Lett. 2020;755: 137797. https://doi.org/10.1016/j.cplett.2020.137797.

    Article  CAS  Google Scholar 

  107. Phan D-T, Youn J-S, Jeon K-J. High-sensitivity and fast-response hydrogen sensor for safety application using Pt nanoparticle-decorated 3D graphene. Renew Energy. 2019;144:167–71. https://doi.org/10.1016/j.renene.2018.05.033.

    Article  CAS  Google Scholar 

  108. Rasch F, Postica V, Schütt F, Mishra YK, Nia AS, Lohe MR, et al. Highly selective and ultra-low power consumption metal oxide based hydrogen gas sensor employing graphene oxide as molecular sieve. Sens Actuators B Chem. 2020;320: 128363. https://doi.org/10.1016/j.snb.2020.128363.

    Article  CAS  Google Scholar 

  109. Galstyan V, Ponzoni A, Kholmanov I, Natile MM, Comini E, Nematov S, et al. Investigation of reduced graphene oxide and a Nb-doped TiO2 nanotube hybrid structure to improve the gas-sensing response and selectivity. ACS Sensors. 2019;4(8):2094–100. https://doi.org/10.1021/acssensors.9b00772.

    Article  CAS  PubMed  Google Scholar 

  110. Bhati VS, Ranwa S, Rajamani S, Kumari K, Raliya R, Biswas P, et al. Improved sensitivity with low limit of detection of a hydrogen gas sensor based on rGO-loaded Ni-doped ZnO nanostructures. ACS Appl Mater Interfaces. 2018;10(13):11116–24. https://doi.org/10.1021/acsami.7b17877.

    Article  CAS  PubMed  Google Scholar 

  111. Kong BJ, Chapline MG, Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater. 2001;13(18):1384–6. https://doi.org/10.1002/1521-4095.

    Article  CAS  Google Scholar 

  112. Monamary A, Vijayalakshmi K, Jereil SD. Hybrid Cr/TiO2/ITO nanoporous film prepared by novel two step deposition for room temperature hydrogen sensing. Phys B Condens Matter. 2019;553:182–9. https://doi.org/10.1016/j.physb.2018.10.049.

    Article  ADS  CAS  Google Scholar 

  113. Furukawa S, Komatsu T. Intermetallic compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 2016;7(1):735–65. https://doi.org/10.1021/acscatal.6b02603.

    Article  CAS  Google Scholar 

  114. Skowronski L, Trzcinski M, Olszewska A, Szczesny R. Microstructure and optical properties of nanostructural thin films fabricated through oxidation of Au–Sn intermetallic compounds. Materials. 2021;14(14):4034. https://doi.org/10.3390/ma14144034.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li G, Shen Y, Zhao S, Li A, Han C, Zhao Q, et al. Novel sensitizer AuxSn modify rGO-SnO2 nanocomposites for enhancing detection of sub-ppm H2. Sens Actuators B Chem. 2022;373: 132656. https://doi.org/10.1016/j.snb.2022.132656.

    Article  CAS  Google Scholar 

  116. Li G, Shen Y, Zhao S, Li A, Gao S, Wei D, et al. High response and moisture resistance hydrogen sensors based on sandwich-structured PtSnx-rGO-SnO2 nanocomposites. Sens Actuators B Chem. 2022;368: 132146. https://doi.org/10.1016/j.snb.2022.132146.

    Article  CAS  Google Scholar 

  117. Sun D, Luo Y, Debliquy M, Zhang C. Graphene-enhanced metal oxide gas sensors at room temperature: a review. Beilstein J Nanotechnol. 2018;9:2832–44. https://doi.org/10.3762/bjnano.9.264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Amarnath M, Heiner A, Gurunathan K. Surface bound nanostructures of ternary r-GO / Mn3O4/V2O5 system for room temperature selectivity of hydrogen gas. Ceram Int. 2020;46(6):7336–45. https://doi.org/10.1016/j.ceramint.2019.11.229.

    Article  CAS  Google Scholar 

  119. Yang F, Zhao M, Sun Q, Qiao Y. A novel hydrothermal synthesis and characterisation of porous Mn3O4 for supercapacitors with high rate capability. RSC Adv. 2015;5(13):9843–7. https://doi.org/10.1039/c4ra10175h.

    Article  ADS  CAS  Google Scholar 

  120. Abdul Hakim S, Liu Y, Lu Y, Chen W. Room temperature highly selective ethanol sensing behavior of hydrothermally prepared Te–V2O5 nanorod nanocomposites. Mater Sci Semicond Process. 2015;31:630–8. https://doi.org/10.1016/j.mssp.2014.12.065.

    Article  CAS  Google Scholar 

  121. Zhou H-CJ, Kitagawa S. Metal–organic frameworks (MOFs). Chem Soc Rev. 2014;43(16):5415-8. https://doi.org/10.1039/c4cs90059f.

  122. Yao MS, Li WH, Xu G. Metal–organic frameworks and their derivatives for electrically-transduced gas sensors. Coord Chem Rev. 2012;426:213479. https://doi.org/10.1016/j.ccr.2020.213479.

  123. Zhang M, Lu M, Yang M-Y, Liao J-P, Liu Y-F, Yan H-J, Chang J-N, Yu T-Y, Li S-L, Lan Y-Q. Ultrafine Cu nanoclusters confined within covalent organic frameworks for efficient electroreduction of CO2 to CH4 by synergistic strategy. 2023:3(3): 100116. https://doi.org/10.1016/j.esci.2023.100116.

  124. Sharma A, Karuppasamy K, Vikraman D, Cho Y, Adaikalam K, Korvink JG, et al. Metal organic framework-derived ZnO@GC nanoarchitecture as an effective hydrogen gas sensor with improved selectivity and gas response. ACS Appl Mater Interfaces. 2022;14(39):44516–26. https://doi.org/10.1021/acsami.2c10706.

    Article  CAS  PubMed  Google Scholar 

  125. Wu X, Xiong S, Mao Z, Hu S, Long X. A designed ZnO@ZIF‐8 core–shell nanorod film as a gas sensor with excellent selectivity for H2 over CO. Chem A Eur J. 2017;23(33):7969-75. https://doi.org/10.1002/chem.201700320.

  126. Weber M, Kim J-H, Lee J-H, Kim J-Y, Iatsunskyi I, Coy E, et al. High-performance nanowire hydrogen sensors by exploiting the synergistic effect of Pd nanoparticles and metal–organic framework membranes. ACS Appl Mater Interfaces. 2018;10(40):34765–73. https://doi.org/10.1021/acsami.8b12569.

    Article  CAS  PubMed  Google Scholar 

  127. Ma C, Zhou T, Yang H, Su H, Wang X, Wu Q, et al. High selectivity and response H2 sensors based on ZnO@ZIF-71@Ag nanorod arrays. Ceram Int. 2023;49(12):19728–36. https://doi.org/10.1016/j.ceramint.2023.03.090.

    Article  CAS  Google Scholar 

  128. Chen L, Luque R, Li Y. Controllable design of tunable nanostructures inside metal–organic frameworks. Chem Soc Rev. 2017;46(15):4614–30. https://doi.org/10.1039/c6cs00537c.

    Article  CAS  PubMed  Google Scholar 

  129. Chen L, Chen H, Luque R, Li Y. Metal−organic framework encapsulated Pd nanoparticles: towards advanced heterogeneous catalysts. Chem Sci. 2014;5(10):3708–14. https://doi.org/10.1039/c4sc01847h.

    Article  CAS  Google Scholar 

  130. Karuppasamy K, Sharma A, Vikraman D, Lee Y-A, Sivakumar P, Korvink JG, et al. Room-temperature response of MOF-derived Pd@PdO core shell/γ-Fe2O3 microcubes decorated graphitic carbon based ultrasensitive and highly selective H2 gas sensor. J Colloid Interface Sci. 2023;652:692–704. https://doi.org/10.1016/j.jcis.2023.07.046.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (22174136 and 22004116) and the Alliance of International Science Organizations (ANSO No. 2020-109).

Author information

Authors and Affiliations

Authors

Contributions

Lili Gao and Ye Tian had the idea for the article, performed the literature search and data analysis, and drafted the work. Guobao Xu, Altaf Hussain, and Yiran Guan critically revised the work. Funding acquisition and supervision: Guobao XU. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lili Gao, Ye Tian or Guobao Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Advances in (Bio-)Analytical Chemistry: Reviews and Trends Collection 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Tian, Y., Hussain, A. et al. Recent developments and challenges in resistance-based hydrogen gas sensors based on metal oxide semiconductors. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05213-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05213-z

Keywords

Navigation