Skip to main content
Log in

Fe-codoped carbon dots serving as a peroxidase mimic to generate in situ hydrogen peroxide for the visual detection of glucose

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanozyme technology has gained significant regard and been successfully implemented in various applications including chemical sensing, bio-medicine, and environmental monitoring. Fe-CDs were synthesized and characterized well in this study. As compared to HRP (3.7 mM), the Fe-CDs exhibited a higher affinity towards H2O2 (0.2 mM) using the steady-state kinetic assay and stronger catalytic capability by changing the color of TMB to the blue color of the oxidized state, oxTMB. Additionally, an efficient peroxidase mimic, Fe-CDs/GOx, based on the hybrid cascade system to produce in situ H2O2 for the visual detection of glucose (color change: colorless to blue, and then to green), has been developed in detail, with limits of detection (LODs) for H2O2 and glucose of 0.33 μM and 1.17 μM, respectively. The changes further demonstrate a linear relationship between absorbance and H2O2 concentration, ranging from 10 to 60 μM, and for glucose (1 to 60 μM). To assess the accuracy and detection capability of the Fe-CDs/GOx system, we evaluated a real human serum sample obtained from adult males in a local hospital. In conclusion, Fe-CDs serving as a peroxidase mimic have the potential for various applications in the fields of biomedicine and nanozymes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Hou JJ, Xianyu YL. Tailoring the surface and composition of nanozymes for enhanced bacterial binding and antibacterial activity. Small. 2023;19:e2302640.

    Article  PubMed  Google Scholar 

  3. Jiang DW, Ni DL, Rosenkrans ZT, Huang P, Yan XY, Cai WB. Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev. 2019;48(14):3683–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang YY, Tan XL, Wang YR, Shen BX, Yang YQ, Huang H. Heteroatom-doped nanozyme progress and perspectives: from synthesis strategies to biomedical applications. Chem Eng J. 2023;468:143703.

    Article  CAS  Google Scholar 

  5. Amin N, Afkhami A, Hosseinzadeh L, Madrakian T. Green and cost-effective synthesis of carbon dots from date kernel and their application as a novel switchable fluorescence probe for sensitive assay of zoledronic acid drug in human serum and cellular imaging. Anal Chim Acta. 2018;1030:183–93.

    Article  CAS  PubMed  Google Scholar 

  6. Lu WJ, Guo YJ, Zhang JH, Yue YF, Fan L, Li F, Dong C, Shuang SM. A high catalytic activity nanozyme based on cobalt-doped carbon dots for biosensor and anticancer cell effect. ACS Appl Mater Inter. 2022;14(51):57206–14.

    Article  CAS  Google Scholar 

  7. Fan KL, Xi JQ, Fan L, Wang PX, Zhu CH, Tang Y, Xu XD, Liang MM, Jiang B, Yan XY, Gao LZ. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun. 2018;9(1):1440.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  8. Zhang XL, Li GL, Chen G, Wu D, Zhou XX, Wu YN. Single-atom nanozymes: a rising star for biosensing and biomedicine. Coordin Chem Rev. 2020;418:213376.

    Article  CAS  Google Scholar 

  9. Zhang FY, Li YM, Li XM, Liu RB, Sang YX, Wang XH, Wang S. Nanozyme-enabled sensing strategies for determining the total antioxidant capacity of food samples. Food Chem. 2022;384:132412.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang XN, Huang XY, Wang ZL, Zhang Y, Huang XW, Li ZH, Daglia M, Xiao JB, Shi JY, Zou XB. Bioinspired nanozyme enabling glucometer readout for portable monitoring of pesticide under resource-scarce environments. Chem Eng J. 2022;429:132243.

    Article  CAS  Google Scholar 

  11. Wang H, Wang Y, Lu LL, Ma Q, Feng RX, Xu SY, James TD, Wang LY. Reducing valence states of co active sites in a single-atom nanozyme for boosted tumor therapy. Adv Funct Mater. 2022;32(28):2200331.

    Article  CAS  Google Scholar 

  12. Shen W, Zhu JM, Hu Y, Yin J, Zheng Y, Xi PX. Applications of rare earth promoted transition metal sulfides in electrocatalysis. Chinese J Chem. 2023;41(14):1740–52.

    Article  CAS  Google Scholar 

  13. Han L, Liu P, Zhang HJ, Li F, Liu AH. Phage capsid protein-directed MnO2 nanosheets with peroxidase-like activity for spectrometric biosensing and evaluation of antioxidant behaviour. Chem Commun. 2017;53(37):5216–9.

    Article  CAS  Google Scholar 

  14. Qiu ZW, Duan W, Cao SF, Zeng T, Zhao TY, Huang JK, Lu XQ, Zeng JB. Highly specific colorimetric probe for fluoride by triggering the intrinsic catalytic activity of a AgPt-Fe3O4 hybrid nanozyme encapsulated in SiO2 shells. Environ Sci Technol. 2022;56(3):1713–23.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Duan W, Qiu ZW, Cao SF, Guo Q, Huang JK, Xing JY, Lu XQ, Zeng JB. Pd-Fe3O4 Janus nanozyme with rational design for ultrasensitive colorimetric detection of biothiols. Biosens Bioelectron. 2022;196:113724.

    Article  CAS  PubMed  Google Scholar 

  16. Huang YY, Liu Z, Liu CQ, Ju EG, Zhang Y, Ren JS, Qu XG. Self-Assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew Chem Int Edit. 2016;55(23):6646–50.

    Article  CAS  Google Scholar 

  17. Liu YF, Cheng Y, Zhang H, Zhou M, Yu YJ, Lin SC, Jiang B, Zhao XZ, Miao LY, Wei CW, Liu QY, Lin YW, Du Y, Butch CJ, Wei H. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci Adv. 2020;6(29):eabb2695.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Li W, Liu Z, Liu CQ, Guan YJ, Ren JS, Qu XG. Manganese dioxide nanozymes as responsive cytoprotective shells for individual living cell encapsulation. Angew Chem Int Edit. 2017;56(44):13661–5.

    Article  CAS  Google Scholar 

  19. Sun HJ, Zhou Y, Ren JS, Qu XG. Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew Chem Int Edit. 2018;57(30):9224–37.

    Article  CAS  Google Scholar 

  20. Liu L, Jiang H, Wang XM. Functionalized gold nanomaterials as biomimetic nanozymes and biosensing actuators. Trac-Trend Anal Chem. 2021;143:116376.

    Article  CAS  Google Scholar 

  21. Gao WH, He JY, Chen L, Meng XQ, Ma YN, Cheng LL, Tu KS, Gao XF, Liu C, Zhang MZ, Fan KL, Pang DW, Yan XY. Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nat Commun. 2023;14(1):160.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Wu H, Xu HM, Shi YX, Yuan T, Meng T, Zhang Y, Xie WJ, Li XH, Li YC, Fan LZ. Recent advance in carbon dots: from properties to applications. Chinese J Chem. 2021;39(5):1364–88.

    Article  CAS  Google Scholar 

  23. Shi WB, Wang QL, Long YJ, Cheng ZL, Chen SH, Zheng HZ, Huang YM. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun. 2011;47(23):6695–7.

    Article  CAS  Google Scholar 

  24. Liu ZX, Chen BB, Liu ML, Zou HY, Huang CZ. Cu(I)-Doped carbon quantum dots with zigzag edge structures for highly efficient catalysis of azide-alkyne cycloadditions. Green Chem. 2017;19(6):1494–8.

    Article  Google Scholar 

  25. Li SQ, Liu XD, Chai HX, Huang YM. Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. Trac-Trend Anal Chem. 2018;105:391–403.

    Article  CAS  Google Scholar 

  26. Zhang AM, Pan SJ, Zhang YH, Chang J, Cheng J, Huang ZC, Li TL, Zhang CL, de la Fuentea JM, Zhang Q, Cui DX. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics. 2019;9(12):3443–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tripathi KM, Ahn HT, Chung M, Le XA, Saini D, Bhati A, Sonkar SK, Kim MI, Kim T. N, S, and P-co-doped carbon quantum dots: intrinsic peroxidase activity in a wide pH range and its antibacterial applications. Acs Biomater Sci Eng. 2020;6(10):5527–37.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu JL, Luo G, Xi XX, Wang YJ, Selvaraj JN, Wen W, Zhang XH, Wang SF. Cu2+-modified hollow carbon nanospheres: an unusual nanozyme with enhanced peroxidase-like activity. Microchim Acta. 2021;188(1):8.

    Article  CAS  Google Scholar 

  29. Wang XY, Wang H, Zhou SQ. Progress and perspective on carbon-based nanozymes for peroxidase-like applications. J Phys Chem Lett. 2021;12(48):11751–60.

    Article  CAS  PubMed  Google Scholar 

  30. Qin RX, Feng YS, Ding DD, Chen L, Li S, Deng HP, Chen SL, Han ZX, Sun WJ, Chen HM. Fe-coordinated carbon nanozyme dots as peroxidase-like nanozymes and magnetic resonance imaging contrast agents. ACS Appl Bio Mater. 2021;4(7):5520–8.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang RF, Chen L, Liang Q, Xi JQ, Zhao HQ, Jin YL, Gao XF, Yan XY, Gao LZ, Fan KL. Unveiling the active sites on ferrihydrite with apparent catalase-like activity for potentiating radiotherapy. Nano Today. 2021;41:101317.

    Article  CAS  Google Scholar 

  32. Xi Z, Wei KC, Wang QX, Kim MJ, Sun SH, Fung V, Xia XH. Nickel-platinum nanoparticles as peroxidase mimics with a record high catalytic efficiency. J Am Chem Soc. 2021;143(7):2660–4.

    Article  CAS  PubMed  Google Scholar 

  33. Ouyang Y, Biniuri Y, Fadeev M, Zhang P, Carmieli R, Vazquez-Gonzalez M, Willner I. Aptamer-modified Cu2+-functionalized C-dots: versatile means to improve nanozyme activities-“aptananozymes.” J Am Chem Soc. 2021;143(30):11510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saengsrichan A, Khemthong P, Wanmolee W, Youngjan S, Phanthasri J, Arjfuk P, Pongchaikul P, Ratchahat S, Posoknistakul P, Laosiripojana N, Wu KCW, Sakdaronnarong C. Platinum/carbon dots nanocomposites from palm bunch hydrothermal synthesis as highly efficient peroxidase mimics for ultra-low H2O2 sensing platform through dual mode of colorimetric and fluorescent detection. Anal Chim Acta. 2022;1230:340368.

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Ding SC, Lyu ZY, Tieu P, Wang MY, Feng ZX, Pan XQ, Zhou Y, Niu XH, Du D, Zhu WL, Lin YH. Single-atomic iron doped carbon dots with both photoluminescence and oxidase-like activity. Small. 2022;18(37):e2203001.

    Article  PubMed  Google Scholar 

  36. Geng BJ, Yan L, Zhu YP, Shi WJ, Wang HN, Mao JJ, Ren LJ, Zhang JQZ, Tian YJ, Gao FY, Zhang XF, Chen JK, Zhu JB. Carbon dot@MXene nanozymes with triple enzyme-mimic activities for mild NIR-II photothermal-amplified nanocatalytic therapy. Adv Healthc Mater. 2023;12(5):e2202154.

    Article  PubMed  Google Scholar 

  37. Li QL, Li H, Li KX, Gu Y, Wang YJ, Yang DZ, Yang YL, Gao L. Specific colorimetric detection of methylmercury based on peroxidase-like activity regulation of carbon dots/Au NPs nanozyme. J Hazard Mater. 2023;441:129919.

    Article  CAS  PubMed  Google Scholar 

  38. Mao GB, Cai Q, Wang FB, Luo CL, Ji XH, He ZK. One-step synthesis of Rox-DNA functionalized CdZnTeS quantum dots for the visual detection of hydrogen peroxide and blood glucose. Anal Chem. 2017;89(21):11628–35.

    Article  CAS  PubMed  Google Scholar 

  39. Wu YF, Gao YF, Du JX. Bifunctional gold nanoclusters enable ratiometric fluorescence nanosensing of hydrogen peroxide and glucose. Talanta. 2019;197:599–604.

    Article  CAS  PubMed  Google Scholar 

  40. Essick EE, Sam F. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid Med Cell Longev. 2010;3(3):168–77.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Woo HA, Yim SH, Shin DH, Kang D, Yu DY, Rhee SG. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell. 2010;140(4):517–28.

    Article  CAS  PubMed  Google Scholar 

  42. Hanaoka S, Lin JM, Yamada M. Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin. Anal Chim Acta. 2001;426(1):57–64.

    Article  CAS  Google Scholar 

  43. Hai X, Li YF, Zhu CZ, Song WL, Cao JY, Bi S. DNA-based label-free electrochemical biosensors: from principles to applications. Trac-Trend Anal Chem. 2020;133:116098.

    Article  CAS  Google Scholar 

  44. Lobnik A, Cajlakovic M. Sol-gel based optical sensor for continuous determination of dissolved hydrogen peroxide. Sensor Actuat B-Chem. 2001;74(1–3):194–9.

    Article  CAS  Google Scholar 

  45. Komkova MA, Karyakin AA. Prussian blue: from advanced electrocatalyst to nanozymes defeating natural enzyme. Microchim Acta. 2022;189(8):290.

    Article  CAS  Google Scholar 

  46. Wang B, Chen YF, Wu YY, Weng B, Liu YS, Li CM. Synthesis of nitrogen- and iron-containing carbon dots, and their application to colorimetric and fluorometric determination of dopamine. Microchim Acta. 2016;183(9):2491–500.

    Article  CAS  Google Scholar 

  47. Lu J, Hu YH, Wang PX, Liu PQ, Chen ZG, Sun DP. Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in-situ monitoring of H2O2 released from H9C2 cardiac cells. Sensor Actuat B-Chem. 2020;311:127909.

    Article  CAS  Google Scholar 

  48. Lu WJ, Guo YJ, Yue YF, Zhang JH, Fan L, Li F, Zhao Y, Dong C, Shuang SM. Smartphone-assisted colorimetric sensing platform based on molybdenum-doped carbon dots nanozyme for visual monitoring of ampicillin. Chem Eng J. 2023;468:143615.

    Article  CAS  Google Scholar 

  49. Valekar AH, Batule BS, Kim MI, Cho KH, Hong DY, Lee UH, Chang JS, Park HG, Hwang YK. Novel amine-functionalized iron trimesates with enhanced peroxidase-like activity and their applications for the fluorescent assay of choline and acetylcholine. Biosens Bioelectron. 2018;100:161–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Sijia Xie conducted all the experiments and Prof. Hai Xiong conceived the experiments. Sijia Xie and Hai Xiong wrote the manuscript. Yating Zeng helped discussion. All authors have approved the final version of the manuscript.

Funding

This work is supported by the Science and Technology Innovation Commission of Shenzhen, China (20231121191245001 and JCYJ20210324095607021 to HX) and the Special Project of Key Fields of Universities in Guangdong Province, China (2021ZDZX2047 to HX), and Top Young Talent of the Pearl River Talent Recruitment Program, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Xiong.

Ethics declarations

The use of the human serum samples used in this study was approved according to the guidelines of the China Ethical Committee by the Regional Ethic Board at Shenzhen University (ethical permissions PN-202400004). The participant provided written informed consent to participate in the detection of glucose.

Conflict of interest

The declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Nanozymes with guest editors Vipul Bansal, Sudipta Seal, and Hui Wei.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5.36 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Zeng, Y., Li, J. et al. Fe-codoped carbon dots serving as a peroxidase mimic to generate in situ hydrogen peroxide for the visual detection of glucose. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05196-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05196-x

Keywords

Navigation