Skip to main content
Log in

Introducing molecular imprinting onto nanozymes: toward selective catalytic analysis

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The discovery of enzyme-like catalytic characteristics in nanomaterials triggers the generation of nanozymes and their multifarious applications. As a class of artificial mimetic enzymes, nanozymes are widely recognized to have better stability and lower cost than natural bio-enzymes, but the lack of catalytic specificity hinders their wider use. To solve the problem, several potential strategies are explored, among which molecular imprinting attracts much attention because of its powerful capacity for creating specific binding cavities as biomimetic receptors. Attractively, introducing molecularly imprinted polymers (MIPs) onto nanozyme surfaces can make an impact on the latter’s catalytic activity. As a result, in recent years, MIPs featuring universal fabrication, low cost, and good stability have been intensively integrated with nanozymes for biochemical detection. In this critical review, we first summarize the general fabrication of nanozyme@MIPs, followed by clarifying the potential effects of molecular imprinting on the catalytic performance of nanozymes in terms of selectivity and activity. Typical examples are emphatically discussed to highlight the latest progress of nanozyme@MIPs applied in catalytic analysis. In the end, personal viewpoints on the future directions of nanozyme@MIPs are presented, to provide a reference for studying the interactions between MIPs and nanozymes and attract more efforts to advance this promising area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van Beilen JB, Li Z. Enzyme technology: an overview. Curr Opin Biotechnol. 2002;13:338–44.

    Article  PubMed  Google Scholar 

  2. Bjerre J, Rousseau C, Marinescu L, Bols M. Artificial enzymes, “Chemzymes”: current state and perspectives. Appl Microbiol Biotechnol. 2008;81:1–11.

    Article  CAS  PubMed  Google Scholar 

  3. Nanda V, Koder RL. Designing artificial enzymes by intuition and computation. Nat Chem. 2010;2:15–24.

    Article  CAS  PubMed  Google Scholar 

  4. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48:1004–76.

    Article  CAS  PubMed  Google Scholar 

  6. Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119:4357–412.

    Article  CAS  PubMed  Google Scholar 

  7. Liang M, Yan X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52:2190–200.

    Article  CAS  PubMed  Google Scholar 

  8. Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42:6060–93.

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Wang L, Du D, Ni L, Pan J, Niu X. Emerging applications of nanozymes in environmental analysis: opportunities and trends. TrAC Trends Anal Chem. 2019;120: 115653.

    Article  CAS  Google Scholar 

  10. Li S, Zhang Y, Wang Q, Lin A, Wei H. Nanozyme-enabled analytical chemistry. Anal Chem. 2022;94:312–23.

    Article  CAS  PubMed  Google Scholar 

  11. Wang Q, Wei H, Zhang Z, Wang E, Dong S. Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay, TrAC. Trends Anal Chem. 2018;105:218–24.

    Article  CAS  Google Scholar 

  12. Niu X, Li X, Lyu Z, Pan J, Ding S, Ruan X, Zhu W, Du D, Lin Y. Metal–organic framework based nanozymes: promising materials for biochemical analysis. Chem Commun. 2020;56:11338–53.

    Article  CAS  Google Scholar 

  13. Lin X, Xuan D, Liang H, Xiao F, Li F, Liu C, Fan P, Hu C, Yang S, Liu Y. Colorimetric detection uranyl ions based on the enhanced peroxidase-like activity by GO adsorption. J Environ Radioact. 2020;220–221: 106299.

    Article  PubMed  Google Scholar 

  14. Liang D, Wang Y, Qian K. Nanozymes: applications in clinical biomarker detection. Interdiscip Med. 2023;1: e20230020.

    Article  Google Scholar 

  15. Liu J, Niu X. Rational design of nanozymes enables advanced biochemical sensing. Chemosensors. 2022;10:386.

    Article  CAS  Google Scholar 

  16. Li X, Zhu H, Liu P, Wang M, Pan J, Qiu F, Ni L, Niu X. Realizing selective detection with nanozymes: strategies and trends. TrAC Trends Anal Chem. 2021;143: 116379.

    Article  CAS  Google Scholar 

  17. Cardoso AR, Frasco MF, Serrano V, Fortunato E, Sales MGF. Molecular imprinting on nanozymes for sensing applications. Biosensors. 2021;11:152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Somerville SV, Li Q, Wordsworth J, Jamali S, Eskandarian MR, Tilley RD, Gooding JJ. Approaches to improving the selectivity of nanozymes. Adv Mater. 2023. https://doi.org/10.1002/adma.202211288.

    Article  PubMed  Google Scholar 

  19. Zhang Z, Zhang X, Liu B, Liu J. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J Am Chem Soc. 2017;139:5412–9.

    Article  CAS  PubMed  Google Scholar 

  20. Tian R, Li Y, Xu J, Hou C, Luo Q, Liu J. Recent development in the design of artificial enzymes through molecular imprinting technology. J Mater Chem B. 2022;10:6590–606.

    Article  CAS  PubMed  Google Scholar 

  21. Muratsugu S, Shirai S, Tada M. Recent progress in molecularly imprinted approach for catalysis. Tetrahedron Lett. 2020;61: 151603.

    Article  CAS  Google Scholar 

  22. Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45:2137–211.

    Article  CAS  PubMed  Google Scholar 

  23. BelBruno JJ. Molecularly imprinted polymers. Chem Rev. 2019;119:94–119.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Z, Li Y, Zhang X, Liu J. Molecularly imprinted nanozymes with faster catalytic activity and better specificity. Nanoscale. 2019;11:4854–63.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Liu B, Liu J. Molecular imprinting for substrate selectivity and enhanced activity of enzyme mimics. Small. 2017;13:1602730.

    Article  Google Scholar 

  26. Dong C, Shi H, Han Y, Yang Y, Wang R, Men J. Molecularly imprinted polymers by the surface imprinting technique. Eur Polym J. 2021;145: 110231.

    Article  CAS  Google Scholar 

  27. Tan CJ, Tong YW. Molecularly imprinted beads by surface imprinting. Anal Bioanal Chem. 2007;389:369–76.

    Article  CAS  PubMed  Google Scholar 

  28. Dietl S, Sobek H, Mizaikoff B. Epitope-imprinted polymers for biomacromolecules: recent strategies, future challenges and selected applications. TrAC Trends Anal Chem. 2021;143: 116414.

    Article  CAS  Google Scholar 

  29. Gooding JJ. Can nanozymes have an impact on sensing? ACS Sens. 2019;4:2213–4.

    Article  CAS  PubMed  Google Scholar 

  30. Fan L, Lou D, Wu H, Zhang X, Zhu Y, Gu N, Zhang Y. A novel AuNP-based glucose oxidase mimic with enhanced activity and selectivity constructed by molecular imprinting and O2-containing nanoemulsion embedding. Adv Mater Interfaces. 2018;5:1801070.

    Article  Google Scholar 

  31. Zhu M, Wang M, Qi W, Su R, He Z. Constructing peptide-based artificial hydrolases with customized selectivity. J Mater Chem B. 2019;7:3804–10.

    Article  CAS  Google Scholar 

  32. Zhang Z, Liu J. Intracellular delivery of a molecularly imprinted peroxidase mimicking DNAzyme for selective oxidation. Mater Horiz. 2018;5:738–44.

    Article  CAS  Google Scholar 

  33. Wu Y, Chen Q, Liu S, Xiao H, Zhang M, Zhang X. Surface molecular imprinting on g-C3N4 photooxidative nanozyme for improved colorimetric biosensing. Chin Chem Lett. 2019;30:2186–90.

    Article  CAS  Google Scholar 

  34. Fan C, Liu J, Zhao H, Li L, Liu M, Gao J, Ma L. Molecular imprinting on PtPd nanoflowers for selective recognition and determination of hydrogen peroxide and glucose. RSC Adv. 2019;9:33678–83.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu Y, Liu J, Xing H, Zhou H, Wu M. Fabrication and application of magnetically catalytic imprinting nanozymes. ChemistrySelect. 2020;5:8284–8.

    Article  CAS  Google Scholar 

  36. Fan L, Tian Y, Lou D, Wu H, Cui Y, Gu N, Zhang Y. Catalytic gold-platinum alloy nanoparticles and a novel glucose oxidase mimic with enhanced activity and selectivity constructed by molecular imprinting. Anal Methods. 2019;11:4586–92.

    Article  Google Scholar 

  37. Zhang Y, Feng YS, Ren XH, He XW, Li WY, Zhang YK. Bimetallic molecularly imprinted nanozyme: dual-mode detection platform. Biosens Bioelectron. 2022;196: 113718.

    Article  CAS  PubMed  Google Scholar 

  38. Wang L, Miao L, Yang H, Yu J, Xie Y, Xu L, Song Y. A novel nanoenzyme based on Fe3O4 nanoparticles@thionine-imprinted polydopamine for electrochemical biosensing. Sens Actuators B Chem. 2017;253:108–14.

    Article  CAS  Google Scholar 

  39. Liu B, Zhu H, Feng R, Wang M, Hu P, Pan J, Niu X. Facile molecular imprinting on magnetic nanozyme surface for highly selective colorimetric detection of tetracycline. Sens Actuators B Chem. 2022;370: 132451.

    Article  CAS  Google Scholar 

  40. Tang K, Chen Y, Wang X, Zhou Q, Lei H, Yang Z, Zhang Z. Smartphone-integrated tri-color fluorescence sensing platform based on acid-sensitive fluorescence imprinted polymers for dual-mode visual intelligent detection of ibuprofen, chloramphenicol and florfenicol. Anal Chim Acta. 2023;1260: 341174.

    Article  CAS  PubMed  Google Scholar 

  41. Bagheri N, Khataee A, Habibi B, Hassanzadeh J. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta. 2018;179:710–8.

    Article  CAS  PubMed  Google Scholar 

  42. Wang L, Wen L, Zheng S, Tao F, Chao J, Wang F, Li C. Integrating peroxidase-mimicking NH2-MIL-101(Fe) with molecular imprinting for high-performance ratiometric fluorescence sensing of domoic acid. Sens Actuators B Chem. 2022;361: 131688.

    Article  CAS  Google Scholar 

  43. Shen M, Wang Y, Kan X. Dual-recognition colorimetric sensing of thrombin based on surface-imprinted aptamer–Fe3O4. J Mater Chem B. 2021;9:4249–56.

    Article  CAS  PubMed  Google Scholar 

  44. Guo L, Zheng H, Zhang C, Qu L, Yu L. A novel molecularly imprinted sensor based on PtCu bimetallic nanoparticle deposited on PSS functionalized graphene with peroxidase-like activity for selective determination of puerarin. Talanta. 2020;210: 120621.

    Article  CAS  PubMed  Google Scholar 

  45. Duan D, Fang X, Li K. A peroxidase-like nanoenzyme based on strontium(II)-ion-exchanged Prussian blue analogue derivative SrCoO3/Co3O4 nanospheres and carbon quantum dots for the colorimetric detection of tigecycline in river water. Talanta. 2022;240: 123112.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Z, Liu Y, Huang P, Wu FY, Ma L. Polydopamine molecularly imprinted polymer coated on a biomimetic iron-based metal–organic framework for highly selective fluorescence detection of metronidazole. Talanta. 2021;232: 122411.

    Article  CAS  PubMed  Google Scholar 

  47. Li S, Ma X, Pang C, Wang M, Yin G, Xu Z, Li J, Luo J. Novel chloramphenicol sensor based on aggregation-induced electrochemiluminescence and nanozyme amplification. Biosens Bioelectron. 2021;176: 112944.

    Article  CAS  PubMed  Google Scholar 

  48. Zeng L, Cui H, Chao J, Huang K, Wang X, Zhou Y, Jing T. Colorimetric determination of tetrabromobisphenol A based on enzyme-mimicking activity and molecular recognition of metal-organic framework-based molecularly imprinted polymers. Microchim Acta. 2020;187:142.

    Article  CAS  Google Scholar 

  49. Gu Y, Yan X, Li C, Zheng B, Li Y, Liu W, Zhang Z, Yang M. Biomimetic sensor based on molecularly imprinted polymer with nitroreductase-like activity for metronidazole detection. Biosens Bioelectron. 2016;77:393–9.

    Article  CAS  PubMed  Google Scholar 

  50. Li M, Luo L, Li J, Xiong Y, Wang L, Liu X. Colorimetric chemosensor based on Fe3O4 magnetic molecularly imprinted nanoparticles for highly selective and sensitive detection of norfloxacin in milk. Foods. 2023;12:285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen Y, Xia Y, Liu Y, Tang Y, Zhao F, Zeng B. Colorimetric and electrochemical detection platforms for tetracycline based on surface molecularly imprinted polyionic liquid on Mn3O4 nanozyme. Biosens Bioelectron. 2022;216: 114650.

    Article  CAS  PubMed  Google Scholar 

  52. Liu B, Zhu H, Liu J, Wang M, Pan J, Feng R, Hu P, Niu X. Alkali-etched imprinted Mn-based Prussian blue analogues with superior oxidase-mimetic activity and precise recognition for tetracycline colorimetric sensing. ACS Appl Mater Interfaces. 2023;15:24736–46.

    Article  CAS  PubMed  Google Scholar 

  53. Lu Z, Dai S, Liu T, Yang J, Sun M, Wu C, Su G, Wang X, Rao H, Yin H, Zhou X, Ye J, Wang Y. Machine learning-assisted Te–CdS@Mn3O4 nano-enzyme induced self-enhanced molecularly imprinted ratiometric electrochemiluminescence sensor with smartphone for portable and visual monitoring of 2,4-D. Biosens Bioelectron. 2023;222: 114996.

    Article  CAS  PubMed  Google Scholar 

  54. Amatatongchai M, Thimoonnee S, Somnet K, Chairam S, Jarujamrus P, Nacapricha D, Lieberzeit PA. Origami 3D-microfluidic paper-based analytical device for detecting carbaryl using mesoporous silica-platinum nanoparticles with a molecularly imprinted polymer shell. Talanta. 2023;254: 124202.

    Article  CAS  PubMed  Google Scholar 

  55. Li S, Pang C, Ma X, Zhang Y, Xu Z, Li J, Zhang M, Wang M. Microfluidic paper-based chip for parathion-methyl detection based on a double catalytic amplification strategy. Microchim Acta. 2021;188:438.

    Article  CAS  Google Scholar 

  56. Chen Y, Tang K, Wang X, Zhou Q, Tang S, Wu X, Zhao P, Lei H, Yang Z, Zhang Z. A homogeneous capillary fluorescence imprinted nanozyme intelligent sensing platform for high sensitivity and visual detection of triclocarban. Sens Actuators B Chem. 2023;382: 133543.

    Article  CAS  Google Scholar 

  57. Huang C, Cheng Y, Zhang Y, Zhao K, Liu H, Zhang B, Cao J, Xu J, Liu J. A molecularly imprinted sensing system for specific detection of monosaccharides based on CeO2 hollow nanosphere cascade enzyme system. Sens Actuators B Chem. 2023;379: 133222.

    Article  CAS  Google Scholar 

  58. Zhang X, Peng J, Xi L, Lu Z, Yu L, Liu M, Huo D, He H. Molecularly imprinted polymers enhanced peroxidase-like activity of AuNPs for determination of glutathione. Microchim Acta. 2022;189:457.

    Article  CAS  Google Scholar 

  59. Wang X, Huang K, Zhang H, Zeng L, Zhou Y, Jing T. Preparation of molecularly imprinted polymers on hemin-graphene surface for recognition of high molecular weight protein. Mater Sci Eng C. 2019;105: 110141.

    Article  CAS  Google Scholar 

  60. Komal M, Kumar JV, Arulmozhi R, Nivetha MS, Pavithra S, Abirami N. Selective and sensitive on-site colorimetric detection of 4,40-isopropylidenediphenol using non-enzymatic molecularly imprinted graphitic carbon nitride hybrids in milk and water samples. New J Chem. 2023;47:9087–100.

    Article  CAS  Google Scholar 

  61. Cheng Y, Chen T, Fu D, Liu J. A molecularly imprinted nanoreactor based on biomimetic mineralization of bi-enzymes for specific detection of urea and its analogues. Sens Actuators B Chem. 2022;350: 130909.

    Article  CAS  Google Scholar 

  62. Wang M, Kan X. Imprinted polymer/Fe3O4 micro-particles decorated multi-layer graphite paper: electrochemical and colorimetric dual-modal sensing interface for aloe-emodin assay. Sens Actuators B Chem. 2020;323: 128672.

    Article  CAS  Google Scholar 

  63. Cheng Y, Chen T, Fu D, Liu M, Cheng Z, Hua Y, Liu J. The construction of molecularly imprinted electrochemical biosensor for selective glucose sensing based on the synergistic enzyme-enzyme mimic catalytic system. Talanta. 2022;242: 123279.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Z, Liu Y, Zhang X, Liu J. A cell-mimicking structure converting analog volume changes to digital colorimetric output with molecular selectivity. Nano Lett. 2017;17:7926–31.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Funding

The authors thank the financial support from the Natural Science Foundation of Hunan Province (No. 2023JJ40534), thee Huxiang Youth Talent Project (No. 2023RC3168), the Start-up Research Fund of University of South China (No. 221RGC011), the Shandong Key Laboratory of Biochemical Analysis (No. SKLBA2301), the State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants (No. SKLMHM202302), and the National Natural Science Foundation of China (No. 21605061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangheng Niu.

Ethics declarations

Conflict of interest

There is no known conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Nanozymes with guest editors Vipul Bansal, Sudipta Seal, and Hui Wei.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, Z., Huang, L., Li, S. et al. Introducing molecular imprinting onto nanozymes: toward selective catalytic analysis. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05183-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05183-2

Keywords

Navigation