Skip to main content
Log in

Screen-printed wearable skin surface pH sensor for real-time monitoring of the buffering capacity of human skin

Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study demonstrated for the first time that skin surface pH can be monitored in real-time, using a screen-printed wearable pH sensor, to evaluate the buffering capacity of the human skin. The screen-printed pH sensor was composed of a polyaniline-based pH-sensitive electrode and a nitrocellulose membrane-based liquid junction type of Ag/AgCl reference electrode. This sensor showed a reliable and reversible potentiometric response to pH with long-term potential stability. Intermittent monitoring of the buffering capacity of skin surface pH demonstrated the reliability of the proposed wearable pH sensor, which was comparable to that of a commercially available flat-tip pH sensor. We found that contact of the wearable pH sensor with the subject’s skin via aqueous electrolyte solutions was necessary for the sensor to continuously monitor the skin surface pH while sustaining the natural buffer capacity of the human skin surface.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Agache P, Humbert P. Measuring the skin—non-invasive investigations, physiology, normal constants. 1st ed. Berlin: Springer- Verlag; 2004.

    Google Scholar 

  2. Cabanillas B, Novak N. Atopic dermatitis and filaggrin. Curr Opin Immunol. 2016;42:1–8. https://doi.org/10.1016/j.coi.2016.05.002.

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi H, Tsuji H, Minami-hori M, Miyauchi Y, Iizuka H. Defective barrier function accompanied by structural changes of psoriatic stratum corneum. J Dermatol. 2014;41:144–8. https://doi.org/10.1111/1346-8138.12393.

    Article  PubMed  Google Scholar 

  4. Hashizume H. Skin aging and dry skin. J Dermatol. 2004;31:603–9. https://doi.org/10.1111/j.1346-8138.2004.tb00565.x.

    Article  PubMed  Google Scholar 

  5. Berardesca E, Farage M, Maibach H. Sensitive skin: an overview. Int J Cosmet Sci. 2013;35:2–8. https://doi.org/10.1111/j.1468-2494.2012.00754.x.

    Article  CAS  PubMed  Google Scholar 

  6. Yosipovitch G, Xiong GL, Haus E, Sackett-Lundeen L, Ashkenazi I, Maibach HI. Time-dependent variations of the skin barrier function in humans: transepidermal water loss, stratum corneum hydration, skin surface pH, and skin temperature. J Invest Dermatol. 1998;110:20–3. https://doi.org/10.1046/j.1523-1747.1998.00069.x.

    Article  CAS  PubMed  Google Scholar 

  7. Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–72. https://doi.org/10.1111/j.1600-0625.2008.00786.x.

    Article  PubMed  Google Scholar 

  8. Parra JL, Paye M. EEMCO guidance for the in vivo assessment of skin surface pH. Skin Pharmacol Appl Skin Physiol. 2003;16:188–202. https://doi.org/10.1159/000069756.

    Article  CAS  PubMed  Google Scholar 

  9. Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci. 2006;28:359–70. https://doi.org/10.1111/j.1467-2494.2006.00344.x.

    Article  CAS  PubMed  Google Scholar 

  10. Schmid-Wendtner MH, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol. 2006;19:296–302. https://doi.org/10.1159/000094670.

    Article  PubMed  Google Scholar 

  11. Boer M, Duchnik E, Maleszka R, Marchlewicz M. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Adv Dermatol Allergol. 2016;33:1–5. https://doi.org/10.5114/pdia.2015.48037.

    Article  Google Scholar 

  12. Matousek JL, Campbell KL. A comparative review of cutaneous pH. Vet Dermatol. 2002;13:293–300. https://doi.org/10.1046/j.1365-3164.2002.00312.x.

    Article  PubMed  Google Scholar 

  13. Öhman H, Vahlquist A. The pH gradient over the stratum corneum differs in X-linked recessive and autosomal dominant ichthyosis: a clue to the molecular origin of the “acid skin mantle”? J Invest Dermatol. 1998;111:674–7. https://doi.org/10.1046/j.1523-1747.1998.00356.x.

    Article  PubMed  Google Scholar 

  14. Fluhr JW, Kao J, Ahn SK, Feingold KR, Elias PM, Jain M. Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol. 2001;117:44–51. https://doi.org/10.1046/j.0022-202x.2001.01399.x.

    Article  CAS  PubMed  Google Scholar 

  15. Behne MJ, Meyer JW, Hanson KM, Barry NP, Murata S, Crumrine D, Clegg RW, Gratton E, Holleran WM, Elias PM, Mauro TM. NHE1 regulates the stratum corneum permeability barrier homeostasis: microenvironment acidification assessed with fluorescent lifetime imaging. J Biol Chem 2002; 277:47399–406. https://doi.org/10.1074/jbc.M204759200.

  16. Hachem JP, Man MQ, Crumrine D, Uchida Y, Brown BE, Rogiers V, Roseeuw D, Feingold KR, Elias PM. Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol. 2005;125:510–20. https://doi.org/10.1111/j.0022-202X.2005.23838.x.

    Article  CAS  PubMed  Google Scholar 

  17. Mauro T, Grayson S, Gao WN, Man MQ, Kriehuber E, Behne M, Feingold KR, Elias PM. Barrier recovery is impeded at neutral pH, independent of ionic effects: implications for extracellular lipid processing. Arch Dermatol Res. 1998;290:215–22. https://doi.org/10.1007/s004030050326.

    Article  CAS  PubMed  Google Scholar 

  18. Hachem JP, Crumrine D, Fluhr J, Brown BE, Feingold KR, Elias PM. pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity / cohesion. J Invest Dermatol. 2003;121:345–53. https://doi.org/10.1046/j.1523-1747.2003.12365.x.

    Article  CAS  PubMed  Google Scholar 

  19. Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, Gao W. Skin-interfaced wearable sweat sensors for precision medicine. Chem Rev. 2023;123:5049–138. https://doi.org/10.1021/acs.chemrev.2c00823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nagashima T, Komeda T, Koyama H, Yamamoto S, Yajima T. Development of a flat dry-pH-sensor for skin surface pH measurement. 2012 International Conference on Life Science and Engineering. 2012; 45: 49–53. https://doi.org/10.7763/IPCBEE.2012.V45.10

  21. Finnegan M, Duffy E, Morrin A. The determination of skin surface pH via the skin volatile emission using wearable colorimetric sensors. Sens Bio-Sens Res. 2022;35: 100473. https://doi.org/10.1016/j.sbsr.2022.100473.

    Article  Google Scholar 

  22. Shitanda I, Komoda M, Hoshi Y, Itagaki M. An instantly usable paper-based screen-printed solid-state KCl/Ag/AgCl reference electrode with long-term stability. Analyst. 2015;140:6481–4. https://doi.org/10.1039/C5AN00617A.

    Article  CAS  PubMed  Google Scholar 

  23. Guinovart T, Valdés-Ramírez G, Windmiller JR, Andrade FJ, Wang J. Bandage-based wearable potentiometric sensor for monitoring wound pH. Electroanalysis. 2014;26:1345–53. https://doi.org/10.1002/elan.201300558.

  24. Shitanda I, Ozone Y, Morishita Y, Matsui H, Loew N, Motosuke M, Mukaimoto T, Kobayashi M, Mitsuhara T, Sugita Y, Matsuo K, Yanagita S, Suzuki T, Mikawa T, Watanabe H, Itagaki M. Air-bubble-insensitive microfluidic lactate biosensor for continuous monitoring of lactate in sweat. ACS Sens. 2023;8:2368–74. https://doi.org/10.1021/acssensors.3c00490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shitanda I, Muramatsu N, Kimura R, Takahashi N, Watanabe K, Matsui H, Loew N, Motosuke M, Mukaimoto T, Kobayashi M, Mitsuhara T, Sugita Y, Matsuo K, Yanagita S, Suzuki T, Watanabe H, Itagaki M. Wearable ion sensors for the detection of sweat ions fabricated by heat-transfer printing. ACS Sens. 2023;8:2889–95. https://doi.org/10.1021/acssensors.3c01027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shah AA, Holze R. Spectroelectrochemistry of two-layered composites of polyaniline and poly (o-aminophenol). Electrochim Acta. 2008;53:4642–53. https://doi.org/10.1016/j.electacta.2008.01.076.

    Article  CAS  Google Scholar 

  27. Abd-Elwahed A, Holze R. Ion size and size memory effects with electropolymerized polyaniline. Synth Met. 2002;131:61–70. https://doi.org/10.1016/S0379-6779(02)00153-4.

    Article  CAS  Google Scholar 

  28. Ichimura Y, Kuritsubo T, Nagamine K, Nomura A, Shitanda I, Tokito S. A fully screen-printed potentiometric chloride ion sensor employing a hydrogel-based touchpad for simple and non-invasive daily electrolyte analysis. Anal Bioanal Chem. 2021;413:1883–91. https://doi.org/10.1007/s00216-021-03156-3.

    Article  CAS  PubMed  Google Scholar 

  29. Yoon JH, Hong SB, Yun SO, Lee SJ, Lee TJ, Lee KG, Choi BG. High performance flexible pH sensor based on polyaniline nanopillar array electrode. J Colloid Interface Sci. 2017;490:53–8. https://doi.org/10.1016/j.jcis.2016.11.033.

    Article  CAS  PubMed  Google Scholar 

  30. Yoon S, Yoon H, Zahed MA, Park C, Kim D, Park JY. Multifunctional hybrid skin patch for wearable smart healthcare applications. Biosens Bioelectron. 2022;196: 113685. https://doi.org/10.1016/j.bios.2021.113685.

    Article  CAS  PubMed  Google Scholar 

  31. Proksch E. pH in nature, humans and skin. J Dermatol. 2018;45:1044–52. https://doi.org/10.1111/1346-8138.14489.

    Article  CAS  PubMed  Google Scholar 

  32. Levin J, Maibach H. Human skin buffering capacity: an overview. Skin Res Technol. 2008;14:121–6. https://doi.org/10.1111/j.1600-0846.2007.00271.x.

    Article  PubMed  Google Scholar 

  33. Ali SM, Yosipovitch G. Skin pH: from basic science to basic skin care. Acta Derm Venereol. 2013;93:261–7. https://doi.org/10.2340/00015555-1531.

    Article  PubMed  Google Scholar 

  34. Turner NG, Cullander C, Guy RH. Determination of the pH gradient across the stratum corneum. J Investig Dermatol Symp Proc. 1998;3:110–3. https://doi.org/10.1038/jidsymp.1998.23.

    Article  CAS  PubMed  Google Scholar 

  35. Zahi H, Maibach H. Occlusion vs. skin barrier function. Skin Res Technol 2002;8:1–6. https://doi.org/10.1046/j.0909-752x.2001.10311.x.

  36. Park HJ, Yoon JH, Lee KG, Choi BG. Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays. Nano Converg. 2019;6:9. https://doi.org/10.1186/s40580-019-0179-0.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rahimi R, Ochoa M, Parupudi T, Zhao X, Yazdi IK, Dokmaci MR, Tamayol A, Khademhosseini A, Ziaie B. A low-cost flexible pH sensor array for wound assessment. Sens Actuators B. 2016;229:609–17. https://doi.org/10.1016/j.snb.2015.12.082.

    Article  CAS  Google Scholar 

  38. Mazzara F, Patella B, D’Agostino C, Bruno MG, Carbone S, Lopresti F, Aiello G, Torino C, Vilasi A, O’Riordan A, Inguanta R. PANI-based wearable electrochemical sensor for pH sweat monitoring. Chemosensors. 2021;9:169. https://doi.org/10.3390/chemosensors9070169.

    Article  CAS  Google Scholar 

  39. Choi MY, Lee M, Kim JH, Kim S, Choi J, So JH, Koo HJ. A fully textile-based pH sensor. J Indust Text. 2022;51:441S–57S. https://doi.org/10.1177/15280837211073361.

    Article  CAS  Google Scholar 

  40. Schmid-Wendtner MH, Korting HC. The pH of the skin surface and its impact on the barrier function, Skin Pharmacol Physiol. 2006;19:296–302. https://doi.org/10.1159/000094670.

  41. Baker LB. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature. 2019;6:211–59. https://doi.org/10.1080/23328940.2019.1632145.

    Article  Google Scholar 

Download references

Funding

This research was supported by JSPS KAKENHI (Grant Number JP21422580) and the foundation of the YU-COE (C) program at Yamagata University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniaki Nagamine.

Ethics declarations

Ethics approval

The experimental protocol of subject test in this study was approved by the Ethics Committee in the Faculty of Medicine, Yamagata University (Approval No. R3-42).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1288 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiba, K., Harada, Y., Matsumoto, H. et al. Screen-printed wearable skin surface pH sensor for real-time monitoring of the buffering capacity of human skin. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05165-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05165-4

Keywords

Navigation