Skip to main content
Log in

Optical fiber surface plasmon resonance sensor using electroless-plated gold film for thrombin detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper describes the simple and label-free detection of thrombin using optical fiber surface plasmon resonance (SPR) sensors based on gold films prepared by the cost-effective method of electroless plating. The plating conditions for simultaneously obtaining gold film on cylindrical core and end surfaces of an optical fiber suitable for measurement were optimized. The fabricated sensor exhibited a linear refractive index sensitivity of 2150 nm/RIU and 7.136 (a.u.)/RIU in the refractive index of 1.3329–1.3605 interrogated by resonance wavelength and amplitude methods respectively and a single wavelength monitoring method was proposed to investigate the sensing performance of this sensor. Polyadenine diblock and thiolated thrombin aptamers were immobilized on gold nanoparticles and gold films respectively to implement a sandwich optical fiber assay for thrombin. The developed optical fiber SPR sensors were successfully used in the determination of thrombin down to 0.56 nM over a wide range from 2 to 100 nM and showed good selectivity for thrombin, which indicated their potential clinical applications for biomedical samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wolberg AS, Campbell RA. Thrombin generation, fibrin clot formation and hemostasis. Transfus Apher Sci. 2008;38(1):15–23. https://doi.org/10.1016/j.transci.2007.12.005.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ray A, Hegde LG, Gupta JB. Thrombin receptor: a novel target for antiplatelet drug development. Thromb Res. 1997;87(1):37–50. https://doi.org/10.1016/s0049-3848(97)00102-3.

    Article  PubMed  CAS  Google Scholar 

  3. de Ridder GG, Lundblad RL, Pizzo SV. Actions of thrombin in the interstitium. J Thromb Haemost. 2016;14(1):40–7. https://doi.org/10.1111/jth.13191.

    Article  PubMed  CAS  Google Scholar 

  4. Ferreira LGR, Figueiredo RC, Carvalho MD, Rios DRA. Thrombin generation assay as a biomarker of cardiovascular outcomes and mortality: a narrative review. Thromb Res. 2022;220:107–15. https://doi.org/10.1016/j.thromres.2022.10.007.

    Article  PubMed  CAS  Google Scholar 

  5. Li L, Liang Y, Zhao Y, Chen ZB. Target binding and DNA hybridization-induced gold nanoparticle aggregation for colorimetric detection of thrombin. Sensors Actuators B-Chem. 2018;262:733–8. https://doi.org/10.1016/j.snb.2018.02.061.

    Article  CAS  Google Scholar 

  6. Zhang LP, Li L. Colorimetric thrombin assay using aptamer-functionalized gold nanoparticles acting as a peroxidase mimetic. Microchim Acta. 2016;183(1):485–90. https://doi.org/10.1007/s00604-015-1674-6.

    Article  CAS  Google Scholar 

  7. Chen XL, Li TT, Tu XQ, Luo L. Label-free fluorescent aptasensor for thrombin detection based on exonuclease I assisted target recycling and SYBR green I aided signal amplification. Sens Actuators B-Chem. 2018;265:98–103. https://doi.org/10.1016/j.snb.2018.02.099.

    Article  CAS  Google Scholar 

  8. Duan WN, Wang XZ, Wang HX, Li F. Fluorescent and colorimetric dual-mode aptasensor for thrombin detection based on target-induced conjunction of split aptamer fragments. Talanta. 2018;180:76–80. https://doi.org/10.1016/j.talanta.2017.12.033.

    Article  PubMed  CAS  Google Scholar 

  9. Wang YH, He XX, Wang KM, Ni XQ, Su J, Chen ZF. Electrochemical detection of thrombin based on aptamer and ferrocenylhexanethiol loaded silica nanocapsules. Biosens Bioelectron. 2011;26(8):3536–41. https://doi.org/10.1016/j.bios.2011.01.041.

    Article  PubMed  CAS  Google Scholar 

  10. Yu JQ, Tao D, Ng EX, Drum CL, Liu AQ, Chen CH. Real-time measurement of thrombin generation using continuous droplet microfluidics. Biomicrofluidics. 2014;8(5):7. https://doi.org/10.1063/1.4894747.

    Article  CAS  Google Scholar 

  11. Kaur B, Kumar S, Kaushik BK. Recent advancements in optical biosensors for cancer detection. Biosens Bioelectron. 2022;197:113805. https://doi.org/10.1016/j.bios.2021.113805.

    Article  PubMed  CAS  Google Scholar 

  12. Li SG, Zhang HY, Zhu M, Kuang ZJ, Li X, Xu F, Miao SY, Zhang ZS, Lou XD, Li H, Xia F. Electrochemical biosensors for whole blood analysis: recent Progress, challenges, and future perspectives. Chem Rev. 2023;123(12):7953–8039. https://doi.org/10.1021/acs.chemrev.1c00759.

    Article  PubMed  CAS  Google Scholar 

  13. Mahmudunnabi RG, Farhana FZ, Kashaninejad N, Firoz SH, Shim YB, Shiddiky MJA. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst. 2020;145(13):4398–420. https://doi.org/10.1039/d0an00558d.

    Article  PubMed  ADS  CAS  Google Scholar 

  14. Romanholo PVV, Razzino CA, Raymundo-Pereira PA, Prado TM, Machado SAS, Sgobbi LF. Biomimetic electrochemical sensors: new horizons and challenges in biosensing applications. Biosens Bioelectron. 2021;185:113242. https://doi.org/10.1016/j.bios.2021.113242.

    Article  PubMed  CAS  Google Scholar 

  15. Bai YF, Feng F, Zhao L, Wang CY, Wang HY, Tian MZ, Qin J, Duan YL, He XX. Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin. Biosens Bioelectron. 2013;47:265–70. https://doi.org/10.1016/j.bios.2013.02.004.

    Article  PubMed  CAS  Google Scholar 

  16. Springer T, Ermini ML, Spacková B, Jablonku J, Homola J. Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters. Anal Chem. 2014;86(20):10350–6. https://doi.org/10.1021/ac502637u.

    Article  PubMed  CAS  Google Scholar 

  17. Dillen A, Mohrbacher A, Lammertyn J. A versatile one-step competitive fiber optic surface plasmon resonance bioassay enabled by DNA nanotechnology. Acs Sensors. 2021;6(10):3677–84. https://doi.org/10.1021/acssensors.1c01447.

    Article  PubMed  CAS  Google Scholar 

  18. Lao JJ, Han LZ, Wu Z, Zhnag XJ, Huang YY, Tang Y, Guo T (2019) Gold nanoparticle-functionalized surface plasmon resonance optical fiber biosensor: In Situ Detection of Thrombin with 1 n.M Detection Limit. J Lightwave Technol. 37(11):2748–55. https://doi.org/10.1109/jlt.2018.2822827

  19. Tabassum S, Kumar R. Advances in fiber-optic Technology for Point-of-Care Diagnosis and in Vivo Biosensing. Adv Mater Technol. 2020;5(5):38. https://doi.org/10.1002/admt.201900792.

    Article  CAS  Google Scholar 

  20. Daems D, Knez K, Delport F, Spasic D, Lammertyn J. Real-time PCR melting analysis with fiber optic SPR enables multiplex DNA identification of bacteria. Analyst. 2016;141(6):1906–11. https://doi.org/10.1039/c5an02342d.

    Article  PubMed  ADS  CAS  Google Scholar 

  21. Zhou YF, Zhang YN, Han B, Cheng LL, Li DX, Zheng WL, Zhao Y. Biochemical sensor based on functional material assisted optical fiber surface plasmon resonance: a review. Measurement. 2023;207:112353. https://doi.org/10.1016/j.measurement.2022.112353.

    Article  Google Scholar 

  22. Ribaut C, Loyez M, Larrieu JC, Chevineau S, Lambert P, Remmelink M, Wattiez R, Caucheteur C. Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis. Biosens Bioelectron. 2017;92:449–56. https://doi.org/10.1016/j.bios.2016.10.081.

    Article  PubMed  CAS  Google Scholar 

  23. Ran Y, Xu ZY, Chen MF, Wang W, Wu Y, Cai JX, Long JQ, Chen ZS, Zhang DM, Guan BO. Fiber-optic theranostics (FOT): interstitial fiber-optic needles for cancer sensing and therapy. Adv Sci. 2022;9(15):2200456. https://doi.org/10.1002/advs.202200456.

    Article  CAS  Google Scholar 

  24. Qian HS, Huang Y, Duan XL, Wei XT, Fan YP, Gan DL, Yue SJ, Cheng W, Chen TM. Fiber optic surface plasmon resonance biosensor for detection of PDGF-BB in serum based on self-assembled aptamer and antifouling peptide monolayer. Biosens Bioelectron. 2019;140:90–5. https://doi.org/10.1016/j.bios.2019.111350.

    Article  CAS  Google Scholar 

  25. Huang Y, Zhang W, Xie WY, Tang DY, Zhang H, Du CL. Influence of ions on dynamic response of surface plasmon resonance fiber optic sensor. Sens Actuat B-Chem. 2013;186:199–204. https://doi.org/10.1016/j.snb.2013.06.008.

    Article  CAS  Google Scholar 

  26. Shi S, Wang LB, Su RX, Liu BS, Huang RL, Qi W, He ZM. A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays. Biosens Bioelectron. 2015;74:454–60. https://doi.org/10.1016/j.bios.2015.06.080.

    Article  PubMed  CAS  Google Scholar 

  27. Shi S, Wang LB, Wang AK, Huang RL, Ding L, Su RX, Qi W, He ZM. Bioinspired fabrication of optical fiber SPR sensors for immunoassays using polydopamine-accelerated electroless plating. J Mater Chem C. 2016;4(32):7554–62. https://doi.org/10.1039/c6tc02149b.

    Article  CAS  Google Scholar 

  28. Shoji A, Nakajima M, Morioka K, Fujimori E, Umemura T, Yanagida A, Hemmi A, Uchiyama K, Nakajima H. Development of a surface plasmon resonance sensor using an optical fiber prepared by electroless displacement gold plating and its application to immunoassay. Talanta. 2022;240:8. https://doi.org/10.1016/j.talanta.2021.123162.

    Article  CAS  Google Scholar 

  29. Loyez M, Ribaut C, Caucheteur C, Wattiez R. Functionalized gold electroless-plated optical fiber gratings for reliable surface biosensing. Sens Actuat B-Chem. 2019;280:54–61. https://doi.org/10.1016/j.snb.2018.09.115.

    Article  CAS  Google Scholar 

  30. Wang XY, Sun XY, Hu YW, Zhang LM, Zeng L, Liu QS, Duan JA. A dual-parameter optical fiber SPR sensor for simultaneous measurement of glucose and cholesterol concentrations. IEEE Sens J. 2022;22(21):20413–20. https://doi.org/10.1109/jsen.2022.3206482.

    Article  ADS  CAS  Google Scholar 

  31. Citartan M, Tang TH. Recent developments of aptasensors expedient for point-of-care (POC) diagnostics. Talanta. 2019;199:556–66. https://doi.org/10.1016/j.talanta.2019.02.066.

    Article  PubMed  CAS  Google Scholar 

  32. Chen J, Li YC, Huang YN, Zhang HJ, Chen XG, Qiu HD. Fluorometric dopamine assay based on an energy transfer system composed of aptamer-functionalized MoS2 quantum dots and MoS2 nanosheets. Microchim Acta. 2019;186(2):9. https://doi.org/10.1007/s00604-018-3143-5.

    Article  ADS  CAS  Google Scholar 

  33. Cennamo N, Pasquardini L, Arcadio F, Vanzetti LE, Bossi AM, Zeni L. D-shaped plastic optical fibre aptasensor for fast thrombin detection in nanomolar range. Sci Rep. 2019;9:18740. https://doi.org/10.1038/s41598-019-55248-x.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  34. Shevchenko Y, Francis TJ, Blair DAD, Walsh R, DeRosa MC, Albert J. In situ biosensing with a surface plasmon resonance fiber grating aptasensor. Anal Chem. 2011;83(18):7027–34. https://doi.org/10.1021/ac201641n.

    Article  PubMed  CAS  Google Scholar 

  35. Bekmurzayeva A, Dukenbayev K, Shaimerdenova M, Bekniyazov I, Ayupova T, Sypabekova M, Molardi C, Tosi D. Etched fiber bragg grating biosensor functionalized with aptamers for detection of thrombin. Sensors. 2018;18(12):4298. https://doi.org/10.3390/s18124298.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  36. Lao JJ, Han LZ, Wu Z, Zhnag XJ, Huang YY, Tang Y, Guo T (2019) Gold nanoparticle-functionalized surface plasmon resonance optical fiber biosensor: In Situ Detection of Thrombin With 1 n.M Detection Limit. Journal of Lightwave Technology 37 (11):2748-2755. https://doi.org/10.1109/jlt.2018.2822827.

  37. Coelho L, de Almeida JMM, Santos JL, Jorge PAD, Martins MCL, Viegas D, Queirós RB. Aptamer-based fiber sensor for thrombin detection. J Biomed Optic. 2016;21(8):87005. https://doi.org/10.1117/1.Jbo.21.8.087005.

    Article  Google Scholar 

  38. Sun DD, Sun LP, Guo T, Guan BO. Label-free thrombin detection using a tapered fiber-optic interferometric aptasensor. J Lightw Technol. 2019;37(11):2756–61. https://doi.org/10.1109/jlt.2018.2878762.

    Article  ADS  CAS  Google Scholar 

  39. Zhou C, Zou HM, Sun CJ, Ren DX, Chen J, Li YX. Signal amplification strategies for DNA-based surface plasmon resonance biosensors. Biosens Bioelectron. 2018;117:678–89. https://doi.org/10.1016/j.bios.2018.06.062.

    Article  PubMed  CAS  Google Scholar 

  40. Loyez M, Hassan EM, Lobry M, Liu F, Caucheteur C, Wattiez R, DeRosa MC, Willmore WG, Albert J. Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification. Acs Sensors. 2020;5(2):454–63. https://doi.org/10.1021/acssensors.9b02155.

    Article  PubMed  CAS  Google Scholar 

  41. Pei H, Li F, Wan Y, Wei M, Liu HJ, Su Y, Chen N, Huang Q, Fan CH. Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates. J Am Chem Soc. 2012;134(29):11876–9. https://doi.org/10.1021/ja304118z.

    Article  PubMed  CAS  Google Scholar 

  42. Huang Y, Li SQ, Liu CY, Chen LG, Qian HS, Ho HP, Wu JL, Wu J, Pu XY. One-step competitive assay for detection of thrombin via disassembly of diblock oligonucleotide functionalised nanogold aggregates. Sens Actuators B: Chem. 2023;376:10. https://doi.org/10.1016/j.snb.2022.133032.

    Article  CAS  Google Scholar 

  43. Sun YF, Cao HY, Ma L, Cui HL, Huang Y. A wavelength selective application for an optical fiber surface plasmon resonance sensor. Opt Commun. 2016;363:110–6. https://doi.org/10.1016/j.optcom.2015.11.018.

    Article  ADS  CAS  Google Scholar 

  44. Sun YF, Cao HY, Yuan YQ, Huang Y, Cui HL, Yun W. Electrically tunable fiber optic sensor based on surface plasmon resonance. Plasmonics. 2016;11(6):1437–44. https://doi.org/10.1007/s11468-016-0194-5.

    Article  CAS  Google Scholar 

  45. Jin YD, Kang XF, Song YH, Zhang BL, Cheng GJ, Dong SJ. Controlled nucleation and growth of surface-confined gold nanoparticles on a (3-aminopropyl)trimethoxysilane-modified class slide: a strategy for SPR substrates. Analy Chem. 2001;73(13):2843–9. https://doi.org/10.1021/ac001207d.

    Article  CAS  Google Scholar 

  46. Zheng WL, Zhang YN, Li LK, Li XG, Zhao Y. A plug-and-play optical fiber SPR sensor for simultaneous measurement of glucose and cholesterol concentrations. Biosens Bioelectron. 2022;198:8. https://doi.org/10.1016/j.bios.2021.113798.

    Article  CAS  Google Scholar 

  47. Zhu SD, Xie ZM, Chen YZ, Liu SY, Kwan YW, Zeng SW, Yuan W, Ho HP. Real-time detection of circulating tumor cells in bloodstream using plasmonic fiber sensors. Biosensors-Basel. 2022;12(11):15. https://doi.org/10.3390/bios12110968.

    Article  CAS  Google Scholar 

  48. Huang Y, Xie WY, Tang DY, Du CL. Theoretical analysis of voltage-dependent fiber optic surface plasmon resonance sensor. Opt Commun. 2013;308:109–14. https://doi.org/10.1016/j.optcom.2013.06.058.

    Article  ADS  CAS  Google Scholar 

  49. Zhao YD, Pang DW, Hu S, Wang ZL, Cheng JK, Qi YP, Dai HP, Mao BW, Tian ZQ, Luo J, Lin ZH. DNA-modified electrodes - part 3: spectroscopic characterization of DNA-modified gold electrodes. Analytica Chimica Acta. 1999;388(1–2):93–101. https://doi.org/10.1016/s0003-2670(99)00065-3.

    Article  CAS  Google Scholar 

  50. Zhang L, Li QQ, Tao W, Yu BH, Du YP. Quantitative analysis of thymine with surface-enhanced raman spectroscopy and partial least squares (PLS) regression. Anal Bioanalytic Chem. 2010;398(4):1827–32. https://doi.org/10.1007/s00216-010-4074-0.

    Article  CAS  Google Scholar 

  51. Wolberg AS. Thrombin generation and fibrin clot structure. Blood Rev. 2007;21(3):131–42. https://doi.org/10.1016/j.blre.2006.11.001.

    Article  PubMed  CAS  Google Scholar 

  52. Cennamo N, Pasquardini L, Arcadio F, Vanzetti LE, Bossi AM, Zeni L. D-shaped plastic optical fibre aptasensor for fast thrombin detection in nanomolar range. Sci Rep. 2019;9:9. https://doi.org/10.1038/s41598-019-55248-x.

    Article  CAS  Google Scholar 

  53. Hasler R, Reiner-Rozman C, Fossati S, Aspermair P, Dostalek J, Lee S, Ibanez M, Bintinger J, Knoll W. Field-effect transistor with a plasmonic fiber optic gate electrode as a multivariable biosensor device. Acs Sensors. 2022;7(2):504–12. https://doi.org/10.1021/acssensors.1c02313.

    Article  PubMed  CAS  Google Scholar 

  54. Bekmurzayeva A, Dukenbayev K, Shaimerdenova M, Bekniyazov I, Ayupova T, Sypabekova M, Molardi C, Tosi D. Etched fiber bragg grating biosensor functionalized with aptamers for detection of thrombin. Sensors. 2018;18(12):14. https://doi.org/10.3390/s18124298.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Project of Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202200431), the Natural Science Foundation of Chongqing (grant no. cstc2020jcyj-msxmX0792 and CSTB2023NSCQ-MSX0175), Chongqing Medical Scientific Research Project (Joint Project of Chongqing Health Commission and Science and Technology Bureau, 2024QNXM037), Venture and Innovation Support Program for Chongqing Overseas Returnees (No. cx2023030), and the Talents Project of University-Town Hospital of Chongqing Medical University.

Author information

Authors and Affiliations

Authors

Contributions

Yu Huang: conceptualization, writing — original draft, review and editing

Xiaoyin Pu: investigation, writing — original draft

Husun Qian: methodology

Chin-Jung Chuang: formal analysis

Shanshan Dong: validation

Jiangling Wu: project administration, writing — original draft

Jianjiang Xue: data curation

Wei Cheng: validation

Shijia Ding: validation

Shengqiang Li: supervision

Corresponding authors

Correspondence to Yu Huang, Jiangling Wu or Shengqiang Li.

Ethics declarations

Ethical approval

This project was under the approval of the institutional review board at the Ethics Committee of University-Town Hospital of Chongqing Medical University (Approval Number: MR-50-23-030861).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.62 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Pu, X., Qian, H. et al. Optical fiber surface plasmon resonance sensor using electroless-plated gold film for thrombin detection. Anal Bioanal Chem 416, 1469–1483 (2024). https://doi.org/10.1007/s00216-024-05150-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05150-x

Keywords

Navigation