Skip to main content
Log in

Advances in microfluidic technology for sperm screening and in vitro fertilization

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

About 18% of reproductive-age adults worldwide are affected by infertility. In vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) are widely used assisted reproductive technologies (ARTs) aimed at improving clinical outcomes. Efficient and noninvasive selection and isolation of highly motile sperm with intact DNA are essential for the success of IVF and ICSI and can potentially impact the therapeutic efficacy and the health of the offspring. Compared to traditional methods, microfluidic technology offers significant advantages such as low sample consumption, high efficiency, minimal damage, high integration, similar microenvironment, and high automation, providing a new platform for ARTs. Here, we review the current situation of microfluidic technology in the field of sperm motility screening and evaluation and IVF research. First, we focus on the working principle, structural design, and screening results of sperm selection microfluidic platforms. We then highlight how the multiple steps of the IVF process can be facilitated and integrated into a microfluidic chip, including oocyte capture, sperm collection and isolation, sperm sorting, fertilization, and embryo culture. Ultimately, we summarize how microfluidics can complement and optimize current sperm sorting and IVF protocols, and challenges and possible solutions are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, et al. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertility and Sterility. 2009;92(5):1520–4.

    Article  CAS  PubMed  Google Scholar 

  2. Cox CM, Thoma ME, Tchangalova N, Mburu G, Bornstein MJ, Johnson CL, et al. Infertility prevalence and the methods of estimation from 1990 to 2021: a systematic review and meta-analysis. Hum Reprod. Open. 2022;2022(4):hoac051.

  3. Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: A review of literature. J Hum Reprod Sci. 2015;8(4):191–6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barak S, Baker HWG. Clinical Management of Male Infertility. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000.

    Google Scholar 

  5. Tasoglu S, Safaee H, Zhang X, Kingsley JL, Catalano PN, Gurkan UA, et al. Exhaustion of racing sperm in nature-mimicking microfluidic channels during sorting. Small. 2013;9(20):3374–84.

    Article  CAS  PubMed  Google Scholar 

  6. Dickey RP. The relative contribution of assisted reproductive technologies and ovulation induction to multiple births in the United States 5 years after the Society for Assisted Reproductive Technology/American Society for Reproductive Medicine recommendation to limit the number of embryos transferred. Fertility and Sterility. 2007;88(6):1554–61.

    Article  PubMed  Google Scholar 

  7. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.

    Article  CAS  PubMed  Google Scholar 

  8. Jin X, Wang G, Liu S, Zhang J, Zeng F, Qiu Y, et al. Survey of the situation of infertile women seeking in vitro fertilization treatment in China. Biomed Res Int. 2013;2013:179098.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sunderam S, Kissin DM, Crawford SB, Folger SG, Boulet SL, Warner L, et al. Assisted Reproductive Technology Surveillance - United States, 2015. MMWR Surveill Summ. 2018;67(3):1–28.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kashaninejad N, Shiddiky MJA, Nguyen NT. Advances in Microfluidics-Based Assisted Reproductive Technology: From Sperm Sorter to Reproductive System-on-a-Chip. Adv Biosyst. 2018;2(3):1700197.

    Article  Google Scholar 

  11. Said TM, Land JA. Effects of advanced selection methods on sperm quality and ART outcome: a systematic review. Hum Reprod Update. 2011;17(6):719–33.

    Article  PubMed  Google Scholar 

  12. Simon L, Murphy K, Shamsi MB, Liu L, Emery B, Aston KI, et al. Paternal influence of sperm DNA integrity on early embryonic development. Hum Reprod. 2014;29(11):2402–12.

    Article  CAS  PubMed  Google Scholar 

  13. Sakkas D, Ramalingam M, Garrido N, Barratt CL. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum Reprod Update. 2015;21(6):711–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rappa KL, Rodriguez HF, Hakkarainen GC, Anchan RM, Mutter GL, Asghar W. Sperm processing for advanced reproductive technologies: Where are we today? Biotechnol Adv. 2016;34(5):578–87.

    Article  PubMed  Google Scholar 

  15. Akerlöf E, Fredricson B, Gustafsson O, Lundin A, Lunell NO, Nylund L, et al. Comparison between a swim-up and a Percoll gradient technique for the separation of human spermatozoa. Int J Androl. 1987;10(5):663–9.

    Article  PubMed  Google Scholar 

  16. Matsuura K, Takenami M, Kuroda Y, Hyakutake T, Yanase S, Naruse K. Screening of sperm velocity by fluid mechanical characteristics of a cyclo-olefin polymer microfluidic sperm-sorting device. Reprod Biomed Online. 2012;24(1):109–15.

    Article  PubMed  Google Scholar 

  17. Figeys D, Pinto D. Lab-on-a-chip: a revolution in biological and medical sciences. Anal Chem. 2000;72(9):330a–5a.

    Article  CAS  PubMed  Google Scholar 

  18. Beebe DJ, Mensing GA, Walker GM. Physics and applications of microfluidics in biology. Annu Rev Biomed Eng. 2002;4:261–86.

    Article  CAS  PubMed  Google Scholar 

  19. Swain JE, Lai D, Takayama S, Smith GD. Thinking big by thinking small: application of microfluidic technology to improve ART. Lab Chip. 2013;13(7):1213–24.

    Article  CAS  PubMed  Google Scholar 

  20. Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod Update. 2006;12(1):23–37.

    Article  CAS  PubMed  Google Scholar 

  21. Nosrati R, Vollmer M, Eamer L, San Gabriel MC, Zeidan K, Zini A, et al. Rapid selection of sperm with high DNA integrity. Lab Chip. 2014;14(6):1142–50.

    Article  CAS  Google Scholar 

  22. Eamer L, Vollmer M, Nosrati R, San Gabriel MC, Zeidan K, Zini A, et al. Turning the corner in fertility: high DNA integrity of boundary-following sperm. Lab Chip. 2016;16(13):2418–22.

    Article  CAS  PubMed  Google Scholar 

  23. Chinnasamy T, Kingsley JL, Inci F, Turek PJ, Rosen MP, Behr B, et al. Guidance and Self-Sorting of Active Swimmers: 3D Periodic Arrays Increase Persistence Length of Human Sperm Selecting for the Fittest. Adv Sci . 2018; 5(2):1700531.

  24. Xiao S, Riordon J, Simchi M, Lagunov A, Hannam T, Jarvi K, et al. FertDish: microfluidic sperm selection-in-a-dish for intracytoplasmic sperm injection. Lab Chip. 2021;21(4):775–83.

    Article  CAS  Google Scholar 

  25. Panigrahi B, Chen CY. Microfluidic retention of progressively motile zebrafish sperms. Lab Chip. 2019;19(24):4033–42.

    Article  CAS  PubMed  Google Scholar 

  26. Cho BS, Schuster TG, Zhu X, Chang D, Smith GD, Takayama S. Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem. 2003;75(7):1671–5.

    Article  CAS  PubMed  Google Scholar 

  27. Shirota K, Yotsumoto F, Itoh H, Obama H, Hidaka N, Nakajima K, et al. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertility and Sterility. 2016;105(2):315–21.e1.

    Article  CAS  PubMed  Google Scholar 

  28. de Wagenaar B, Berendsen JT, Bomer JG, Olthuis W, van den Berg A, Segerink LI. Microfluidic single sperm entrapment and analysis. Lab Chip. 2015;15(5):1294–301.

    Article  PubMed  Google Scholar 

  29. Seo DB, Agca Y, Feng ZC, Critser JK. Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure. Microfluid Nanofluidics. 2007;3(5):561–70.

    Article  Google Scholar 

  30. Wu JK, Chen PC, Lin YN, Wang CW, Pan LC, Tseng FG. High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis. Analyst. 2017;142(6):938–44.

    Article  CAS  PubMed  Google Scholar 

  31. Nagata MPB, Endo K, Ogata K, Yamanaka K, Egashira J, Katafuchi N, et al. Live births from artificial insemination of microfluidic-sorted bovine spermatozoa characterized by trajectories correlated with fertility. Proc Natl Acad Sci U S A. 2018;115(14):E3087–e96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zaferani M, Cheong SH, Abbaspourrad A. Rheotaxis-based separation of sperm with progressive motility using a microfluidic corral system. Proc Natl Acad Sci U S A. 2018;115(33):8272–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koyama S, Amarie D, Soini HA, Novotny MV, Jacobson SC. Chemotaxis assays of mouse sperm on microfluidic devices. Anal Chem. 2006;78(10):3354–9.

    Article  CAS  Google Scholar 

  34. Ko YJ, Maeng JH, Lee BC, Lee S, Hwang SY, Ahn Y. Separation of progressive motile sperm from mouse semen using on-chip chemotaxis. Anal Chem. 2012;28(1):27–32.

    CAS  Google Scholar 

  35. Gatica LV, Guidobaldi HA, Montesinos MM, Teves ME, Moreno AI, Uñates DR, et al. Picomolar gradients of progesterone select functional human sperm even in subfertile samples. Mol Hum Reprod. 2013;19(9):559–69.

    Article  CAS  PubMed  Google Scholar 

  36. Li K, Li R, Ni Y, Sun P, Liu Y, Zhang D, et al. Novel distance-progesterone-combined selection approach improves human sperm quality. J Transl Med. 2018;16(1):203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berendsen JTW, Kruit SA, Atak N, Willink E, Segerink LI. Flow-Free Microfluidic Device for Quantifying Chemotaxis in Spermatozoa. Anal Chem. 2020;92(4):3302–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Z, Liu W, Qiu T, Xie L, Chen W, Liu R, et al. The construction of an interfacial valve-based microfluidic chip for thermotaxis evaluation of human sperm. Biomicrofluidics. 2014;8(2):024102.

    Article  PubMed Central  Google Scholar 

  39. Pérez-Cerezales S, Laguna-Barraza R, de Castro AC, Sánchez-Calabuig MJ, Cano-Oliva E, de Castro-Pita FJ, et al. Sperm selection by thermotaxis improves ICSI outcome in mice. Sci Rep. 2018;8(1):2902.

    Article  PubMed Central  Google Scholar 

  40. Ko YJ, Maeng JH, Hwang SY, Ahn Y. Design, Fabrication, and Testing of a Microfluidic Device for Thermotaxis and Chemotaxis Assays of Sperm. SLAS Technol. 2018;23(6):507–15.

    Article  PubMed  Google Scholar 

  41. Yan Y, Zhang B, Fu Q, Wu J, Liu R. A fully integrated biomimetic microfluidic device for evaluation of sperm response to thermotaxis and chemotaxis. Lab Chip. 2021;21(2):310–8.

    Article  CAS  Google Scholar 

  42. Kricka LJ, Nozaki O, Heyner S, Garside WT, Wilding P. Applications of a microfabricated device for evaluating sperm function. Clin Chem. 1993;39(9):1944–7.

    Article  CAS  Google Scholar 

  43. Kricka LJ, Faro I, Heyner S, Garside WT, Fitzpatrick G, McKinnon G, et al. Micromachined analytical devices: microchips for semen testing. J Pharm Biomed Anal. 1997;15(9-10):1443–7.

    Article  CAS  PubMed  Google Scholar 

  44. Xie L, Ma R, Han C, Su K, Zhang Q, Qiu T, et al. Integration of sperm motility and chemotaxis screening with a microchannel-based device. Clin Chem. 2010;56(8):1270–8.

    Article  CAS  PubMed  Google Scholar 

  45. Denissenko P, Kantsler V, Smith DJ, Kirkman-Brown J. Human spermatozoa migration in microchannels reveals boundary-following navigation. Proc Natl Acad Sci U S A. 2012;109(21):8007–10.

    Article  CAS  PubMed Central  Google Scholar 

  46. Yanagimachi R, Cherr G, Matsubara T, Andoh T, Harumi T, Vines C, et al. Sperm attractant in the micropyle region of fish and insect eggs. Biol Reprod. 2013;88(2):47.

    Article  PubMed  Google Scholar 

  47. Zaferani M, Palermo GD, Abbaspourrad A. Strictures of a microchannel impose fierce competition to select for highly motile sperm. Sci Adv. 2019;5(2):eaav2111.

  48. Zhang Y, Xiao RR, Yin T, Zou W, Tang Y, Ding J, et al. Generation of Gradients on a Microfluidic Device: Toward a High-Throughput Investigation of Spermatozoa Chemotaxis. PloS One. 2015;10(11):e0142555.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;2(8085):366.

    Article  CAS  PubMed  Google Scholar 

  50. Weigl BH, Yager P. Microfluidics - Microfluidic diffusion-based separation and detection. Science. 1999;283(5400):346–7.

    Article  Google Scholar 

  51. Kenis PJ, Ismagilov RF, Whitesides GM. Microfabrication inside capillaries using multiphase laminar flow patterning. Science. 1999;285(5424):83–5.

    Article  CAS  PubMed  Google Scholar 

  52. Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM. Subcellular positioning of small molecules. Nature. 2001;411(6841):1016.

    Article  CAS  PubMed  Google Scholar 

  53. Hyakutake T, Hashimoto Y, Yanase S, Matsuura K, Naruse K. Application of a numerical simulation to improve the separation efficiency of a sperm sorter. Biomed Microdevices. 2009;11(1):25–33.

    Article  PubMed  Google Scholar 

  54. Miki K, Clapham DE. Rheotaxis guides mammalian sperm. Curr Biol. 2013;23(6):443–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chan PJ, Jacobson JD, Corselli JU, Patton WC. A simple zeta method for sperm selection based on membrane charge. Fertility and Sterility. 2006;85(2):481–6.

    Article  CAS  PubMed  Google Scholar 

  56. Eisenbach M, Giojalas LC. Sperm guidance in mammals - an unpaved road to the egg. Nat Rev Mol Cell Biol. 2006;7(4):276–85.

    Article  CAS  PubMed  Google Scholar 

  57. Kaupp UB, Kashikar ND, Weyand I. Mechanisms of sperm chemotaxis. Annu Rev Physiol. 2008;70:93–117.

    Article  CAS  PubMed  Google Scholar 

  58. Oren-Benaroya R, Orvieto R, Gakamsky A, Pinchasov M, Eisenbach M. The sperm chemoattractant secreted from human cumulus cells is progesterone. Hum Reprod. 2008;23(10):2339–45.

    Article  CAS  PubMed  Google Scholar 

  59. Anderson RA Jr, Feathergill KA, Rawlins RG, Mack SR, Zaneveld LJ. Atrial natriuretic peptide: a chemoattractant of human spermatozoa by a guanylate cyclase-dependent pathway. Mol Reprod Dev. 1995;40(3):371–8.

    Article  CAS  PubMed  Google Scholar 

  60. Li J, Lin F. Microfluidic devices for studying chemotaxis and electrotaxis. Trends Cell Biol. 2011;21(8):489–97.

    Article  PubMed  Google Scholar 

  61. Tung CK, Ardon F, Fiore AG, Suarez SS, Wu M. Cooperative roles of biological flow and surface topography in guiding sperm migration revealed by a microfluidic model. Lab Chip. 2014;14(7):1348–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Srinivasan P, Zervantonakis IK, Kothapalli CR. Synergistic effects of 3D ECM and chemogradients on neurite outgrowth and guidance: a simple modeling and microfluidic framework. PloS One. 2014;9(6):e99640.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cheng SY, Heilman S, Wasserman M, Archer S, Shuler ML, Wu M. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip. 2007;7(6):763–9.

    Article  CAS  PubMed  Google Scholar 

  64. Clark SG, Haubert K, Beebe DJ, Ferguson CE, Wheeler MB. Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization. Lab Chip. 2005;5(11):1229–32.

    Article  CAS  PubMed  Google Scholar 

  65. Suh RS, Zhu X, Phadke N, Ohl DA, Takayama S, Smith GD. IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm. Hum Reprod. 2006;21(2):477–83.

    Article  PubMed  Google Scholar 

  66. Sano H, Matsuura K, Naruse K, Funahashi H. Application of a microfluidic sperm sorter to the in-vitro fertilization of porcine oocytes reduced the incidence of polyspermic penetration. Theriogenology. 2010;74(5):863–70.

    Article  PubMed  Google Scholar 

  67. Han C, Zhang Q, Ma R, Xie L, Qiu T, Wang L, et al. Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device. Lab Chip. 2010;10(21):2848–54.

    Article  CAS  PubMed  Google Scholar 

  68. Ma R, Xie L, Han C, Su K, Qiu T, Wang L, et al. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Anal Chem. 2011;83(8):2964–70.

    Article  CAS  PubMed  Google Scholar 

  69. Huang HY, Lai YL, Yao DJ. Dielectrophoretic Microfluidic Device for in Vitro Fertilization. Micromachines. 2018;9(3):135.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Choi W, Kim JS, Lee DH, Lee KK, Koo DB, Park JK. Dielectrophoretic oocyte selection chip for in vitro fertilization. Biomed Microdevices. 2008;10(3):337–45.

    Article  PubMed  Google Scholar 

  71. Dyer S, Chambers GM, de Mouzon J, Nygren KG, Zegers-Hochschild F, Mansour R, et al. International Committee for Monitoring Assisted Reproductive Technologies world report: Assisted Reproductive Technology 2008, 2009 and 2010. Hum Reprod. 2016;31(7):1588–609.

    Article  CAS  PubMed  Google Scholar 

  72. Simon L, Lewis SE. Sperm DNA damage or progressive motility: which one is the better predictor of fertilization in vitro? Syst Biol Reprod Med. 2011;57(3):133–8.

    Article  PubMed  Google Scholar 

  73. Elbashir S, Magdi Y, Rashed A, et al. Relationship between sperm progressive motility and DNA integrity in fertile and infertile men. Middle East Fertil Soc J. 2018;23(3):195–8.

    Article  Google Scholar 

  74. Matsuura K, Uozumi T, Furuichi T, Sugimoto I, Kodama M, Funahashi H. A microfluidic device to reduce treatment time of intracytoplasmic sperm injection. Fertility and Sterility. 2013;99(2):400–7.

    Article  PubMed  Google Scholar 

  75. Bhattacharjee N, Urrios A, Kanga S, Folch A. The upcoming 3D-printing revolution in microfluidics. Lab Chip. 2016;16(10):1720–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nielsen AV, Beauchamp MJ, Nordin GP, Woolley AT. 3D Printed Microfluidics. Annu Rev Anal Chem. 2020;13(1):45–65.

    Article  Google Scholar 

  77. Li W-X, Liang G, Yan W, Zhang Q, Wang W, Zhou X, et al. Artificial Uterus on a Microfluidic Chip. Chinese J Anal Chem. 2013;41:467–72.

    Article  CAS  Google Scholar 

  78. Aziz AUR, Fu M, Deng J, Geng C, Luo Y, Lin B, et al. A Microfluidic Device for Culturing an Encapsulated Ovarian Follicle. Micromachines. 2017;8(11):335.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ferraz MA, Henning HH, Van Dorenmalen KM, Vos PL, Stout TA, Malda J, et al., editors. Use of transwell cell culture and 3-D printing technology to develop an in vitro oviduct model to study bovine fertilization. Fertil Dev. 2016; 28:156-156.

  80. Zheng F, Fu F, Cheng Y, Wang C, Zhao Y, Gu Z. Organ-on-a-Chip Systems: Microengineering to Biomimic Living Systems. Small. 2016;12(17):2253–82.

    Article  CAS  PubMed  Google Scholar 

  81. Yang Y, Noviana E, Nguyen MP, Geiss BJ, Dandy DS, Henry CS. Paper-Based Microfluidic Devices: Emerging Themes and Applications. Anal Chem. 2017;89(1):71–91.

    Article  CAS  PubMed  Google Scholar 

  82. Ren KN, Chen Y, Wu HK. New materials for microfluidics in biology. Curr Opin Biotechnol. 2014;25:78–85.

    Article  CAS  PubMed  Google Scholar 

  83. Nielsen JB, Hanson RL, Almughamsi HM, Pang C, Fish TR, Woolley AT. Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Anal Chem. 2020;92(1):150–68.

    Article  CAS  PubMed  Google Scholar 

  84. Angione SL, Oulhen N, Brayboy LM, Tripathi A, Wessel GM. Simple perfusion apparatus for manipulation, tracking, and study of oocytes and embryos. Fertility and Sterility. 2015;103(1):281–290.e5.

    Article  PubMed  Google Scholar 

  85. Weng L, Lee GY, Liu J, Kapur R, Toth TL, Toner M. On-chip oocyte denudation from cumulus-oocyte complexes for assisted reproductive therapy. Lab Chip. 2018;18(24):3892–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zeggari R, Wacogne B, Pieralli C, Roux C, Gharbi T. A full micro-fluidic system for single oocyte manipulation including an optical sensor for cell maturity estimation and fertilisation indication. Sens Actuators B Chem. 2007;125(2):664–71.

    Article  CAS  Google Scholar 

  87. Luo Z, Guven S, Gozen I, Chen P, Tasoglu S, Anchan RM, et al. Deformation of a single mouse oocyte in a constricted microfluidic channel. Microfluid Nanofluidics. 2015;19(4):883–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Berthier E, Young EW, Beebe D. Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip. 2012;12(7):1224–37.

    Article  CAS  PubMed  Google Scholar 

  89. Kang Y, Zou L, Qiu B, Liang X, Sun S, Gao D, et al. Unloading of cryoprotectants from cryoprotectant-loaded cells on a microfluidic platform. Biomed Microdevices. 2017;19(2):15.

    Article  Google Scholar 

  90. Berenguel-Alonso M, Sabés-Alsina M, Morató R, Ymbern O, Rodríguez-Vázquez L, Talló-Parra O, et al. Rapid Prototyping of a Cyclic Olefin Copolymer Microfluidic Device for Automated Oocyte Culturing. SLAS Technol. 2017;22(5):507–17.

    Article  PubMed  Google Scholar 

  91. Gnecco JS, Pensabene V, Li DJ, Ding T, Hui EE, Bruner-Tran KL, et al. Compartmentalized Culture of Perivascular Stroma and Endothelial Cells in a Microfluidic Model of the Human Endometrium. Ann Biomed Eng. 2017;45(7):1758–69.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Klotz KL, Coppola MA, Labrecque M, Brugh VM 3rd, Ramsey K, Kim KA, et al. Clinical and consumer trial performance of a sensitive immunodiagnostic home test that qualitatively detects low concentrations of sperm following vasectomy. J Urol. 2008;180(6):2569–76.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Coppola MA, Klotz KL, Kim KA, Cho HY, Kang J, Shetty J, et al. SpermCheck Fertility, an immunodiagnostic home test that detects normozoospermia and severe oligozoospermia. Hum Reprod. 2010;25(4):853–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brezina PR, Haberl E, Wallach E. At home testing: optimizing management for the infertility physician. Fertility and Sterility. 2011;95(6):1867–78.

    Article  PubMed  Google Scholar 

  95. Volpatti LR, Yetisen AK. Commercialization of microfluidic devices. Trends Biotechnol. 2014;32(7):347–50.

    Article  CAS  PubMed  Google Scholar 

  96. You JB, McCallum C, Wang Y, Riordon J, Nosrati R, Sinton D. Machine learning for sperm selection. Nat Rev Urol. 2021;18(7):387–403.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32201179), Guangdong Basic and Applied Basic Research Foundation (2020A1515110126 and 2021A1515010130) and the Fundamental Research Funds for the Central Universities (N2319005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyu Liu, Chong Qiao or Ye Tian.

Ethics declarations

Conflicts of interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Xie, Q., Zhang, Y. et al. Advances in microfluidic technology for sperm screening and in vitro fertilization. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-023-05120-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-023-05120-9

Keywords

Navigation