Skip to main content
Log in

Design of a dual Ir-Eu tag for fluorescent visualization and ICP-MS quantification of SIRPα and its host cells

  • Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

With the expansion of ICP-MS application into the field of bioanalysis, there is an urgent need for novel element tags today. Here, we report the design of a dual-element Ir-Eu tag, opening the door to simultaneous fluorescent imaging and ICP-MS quantification. The ratio of 153Eu/193Ir may serve as a precision control of the labeling process, allowing internal validation of the quantitative results obtained. As for SIRPα and its host cell analysis exemplified here, the Ir-Eu tag demonstrated superior figures of ICP-MS quantification with the LOD (3σ) down to 0.5 (153Eu) and 1.1 (193Ir) pM SIRPα and 220 (153Eu) and 830 (193Ir) RAW264.7 cells more than 130 times more sensitive compared with the LOD (3σ) of 65.2 pM SIRPα at 612 nm using fluorometry. Not limited to these demonstrations, we believe that the design ideas of the dual Ir-Eu tags should be applicable to various cases of bioanalysis when dual optical profiling and ICP-MS quantification are indispensable.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Liu R, Zhang SX, Wei C, Xing Z, Zhang SC, Zhang XR. Metal stable isotope tagging: renaissance of radioimmunoassay for multiplex and absolute quantification of biomolecules. Acc Chem Res. 2016;49:775–83.

    Article  CAS  PubMed  Google Scholar 

  2. Sanz-Medel A, Montes-Bayón M, Bettmer J, Fernández-Sanchez ML, Encinar JR. ICP-MS for absolute quantification of proteins for heteroatom-tagged, targeted proteomics. Trac-Trends Anal Chem. 2012;40:52–63.

    Article  CAS  Google Scholar 

  3. Yan XW, Yang LM, Wang QQ. Detection and quantification of proteins and cells by use of elemental mass spectrometry: progress and challenges. Anal Bioanal Chem. 2013;405:5663–70.

    Article  CAS  PubMed  Google Scholar 

  4. Liang Y, Yang LM, Wang LM. An ongoing path of element-labeling/tagging strategies toward quantitative bioanalysis using ICP-MS. Appl Spectrosc Rev. 2016;51:117–28.

    Article  CAS  Google Scholar 

  5. Liang Y, Jiang X, Yuan R, Zhou Y, Ji CX, Yang LM, Chen HF, Wang QQ. Metabolism-based click-mediated platform for specific imaging and quantification of cell surface sialic acids. Anal Chem. 2017;89:538–43.

    Article  CAS  PubMed  Google Scholar 

  6. Liu CL, Lu S, Yang LM, Chen PJ, Bai PM, Wang QQ. Near-infrared neodymium tag for quantifying targeted biomarker and counting its host circulating tumor cells. Anal Chem. 2017;89:9239–46.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang ZB, Yan XW, Xu M, Yang LM, Wang QQ. A dual-labelling strategy for integrated ICPMS and LIF for the determination of peptides. J Anal At Spectrom. 2011;26:1175–7.

    Article  CAS  Google Scholar 

  8. Zhang ZB, Luo Q, Yan XW, Li ZX, Luo YC, Yang LM, Zhang B, Chen HF, Wang QQ. Integrin-targeted trifunctional probe for cancer cells: a “seeing and counting” approach. Anal Chem. 2012;84:8946–51.

    Article  CAS  PubMed  Google Scholar 

  9. Liang Y, Jiang X, Tang NN, Yang LM, Chen HF, Wang QQ. Quantification and visualization of glutathione S-transferase omega 1 in cells using inductively coupled plasma mass spectrometry (ICP-MS) and fluorescence microscopy. Anal Bioanal Chem. 2015;407:2373–81.

    Article  CAS  PubMed  Google Scholar 

  10. Yuan JL, Wang GL. Lanthanide complex-based fluorescence label for time-resolved fluorescence bioassay. J Fluoresc. 2005;15:559–68.

    Article  CAS  PubMed  Google Scholar 

  11. Bünzli JCG. Lanthanide Luminescence for Biomedical Analyses and Imaging. Chem Rev. 2010;110:2729–55.

    Article  PubMed  Google Scholar 

  12. Yan XW, Yang LM, Wang QQ. Lanthanide-coded protease-specific peptide-nanoparticle probes for a label-free multiplex protease assay using element mass spectrometry: a proof-of-concept study. Angew Chem Int Ed. 2011;50:5130–3.

    Article  CAS  Google Scholar 

  13. Schwarz G, Mueller L, Beck S, Linscheid MW. J Anal At Spectrom. 2014;29:221–33.

    Article  CAS  Google Scholar 

  14. Wendt K, Gottwald T, Mattolat C, Raeder S. Ionization potentials of the lanthanides and actinides-towards atomic spectroscopy of super-heavy elements. Hyperfine Interact. 2014;227:55–67.

    Article  CAS  Google Scholar 

  15. Chen FF, Chen ZQ, Bian ZQ, Huang CH. Sensitized luminescence from lanthanides in d–f bimetallic complexes. Coord Chem Rev. 2010;254:991–1010.

    Article  CAS  Google Scholar 

  16. Xu LJ, Xu GT, Chen ZN. Recent advances in lanthanide luminescence with metal-organic chromophores as sensitizers. Coord Chem Rev. 2014;273–274:47–62.

    Article  Google Scholar 

  17. Lian P, Wei HB, Zheng C, Nie YF, Bian J, Bian ZQ, Huang CH. Synthesis, characteristics and photoluminescent properties of novel Ir-Eu heteronuclear complexes containing 2-carboxyl-pyrimidine as a bridging ligand. Dalton Trans. 2011;40:5476–82.

    Article  CAS  PubMed  Google Scholar 

  18. Sykes D, Cankut AJ, Ali NM, Stephenson A, Spall SJP, Parker SC, Weinstein JA, Ward MD. Sensitisation of Eu(III)-and Tb(III)-based luminescence by Ir(III) units in Ir/lanthanide dyads: evidence for parallel energy-transfer and electron-transfer based mechanisms. Dalton Trans. 2014;43:6414–28.

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 2013;339:971–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu CL, Yu DX, Ge FC, Yang LM, Wang QQ. Fluorescent and mass spectrometric evaluation of the phagocytic internalization of a CD47-peptide modified drug-nanocarrier. Anal Bioanal Chem. 2019;411:4193–202.

    Article  CAS  PubMed  Google Scholar 

  21. Yuan R, Ge FC, Liang Y, Zhou Y, Yang LM, Wang QQ. Viruslike element-tagged nanoparticle inductively coupled plasma mass spectrometry signal multiplier: membrane biomarker mediated cell counting. Anal Chem. 2019;91(4948–52):21.

    Google Scholar 

  22. Liang Y, Liu Q, Zhou Y, Chen S, Yang LM, Zhu M, Wang QQ. Counting and recognizing single bacterial cells by a lanthanide-encoding inductively coupled plasma mass spectrometric approach. Anal Chem. 2019;91:8341–9.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou Y, Chen ZQ, Zeng JX, Zhang JX, Yu DX, Zhang B, Yan XW, Yang LM, Wang QQ. Direct infusion ICP-qMS of lined-up single-cell using an oil-free passive microfluidic system. Anal Chem. 2020;92:5286–93.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Z, Liang Y, Zhou Y, Ge FC, Yan XW, Yang LM, Wang QQ. Single-cell fucosylation breakdown: switching fucose to europium. iScience 2021;24:102397.

  25. Resano M, Aramendia M, Garcia-Ruiz E, Bazo A, Bolea-Fernandez E, Vanhaecke F. Living in a transient world: ICP-MS reinvented via time-resolved analysis for monitoring single events. Chem Sci. 2022;13:4436–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We thank the financial supports from the National Natural Science Foundation of China (22193053, 21535007, and 22074127) and the National Key Research and Development Program of China (2022YFF0710202) as well as Medical and Health Key Project of Xiamen (3502Z20191106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingguo Liu or Qiuquan Wang.

Ethics declarations

Ethics approval

Sixty-five blood samples from 27 liver cancer patients, 12 lithiasis patients and 26 inflammation patients were provided by Xiamen University affiliated Zhongshan Hospital and permitted by Medical Ethics Council.

Consent to participate

Informed consent was given by the patients donating the blood sample for analysis.

Conflict of interest

The authors declare that they have no competing interests. Qiuquan Wang is co-editor of Analytical and Bioanalytical Chemistry but was not involved in the peer review of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Elemental Mass Spectrometry for Bioanalysis with guest editors Jörg Bettmer, Mario Corte-Rodríguez, and Márcia Foster Mesko.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5311 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, P., Yan, X. et al. Design of a dual Ir-Eu tag for fluorescent visualization and ICP-MS quantification of SIRPα and its host cells. Anal Bioanal Chem 416, 2691–2697 (2024). https://doi.org/10.1007/s00216-023-05108-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05108-5

Keywords

Navigation