Skip to main content
Log in

Copper formate–lysine nanoparticles with polyphenol oxidase-like activity for the detection of epinephrine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Laccase is an enzyme known for its eco-friendly uses in environmental cleanup and biotechnology. However, it has limitations such as low stability, high cost, and complex recycling. So, there is a need for laccase mimics that can effectively imitate its properties. Herein, we created copper formate–lysine nanoparticles (Cuf-Lys) that mimic laccase’s activity. The developed Cuf-Lys demonstrated remarkable polyphenol oxidase-like activity, stability, and recyclability, making them suitable for the fabrication of efficient colorimetric sensors for the detection of epinephrine. These sensors had a specific response and could accurately measure epinephrine concentrations ranging from 2.5 to 50 μM, with a detection limit as low as 1 μM. Furthermore, the biosensor demonstrated high sensitivity and selectivity when applied to the detection of rutin. The limit of detection for rutin was determined to be 0.16 μM while in the linear concentration range of 0.25 to 150.0 μM. We believe that Cuf-Lys provide a new route for the design of laccase mimics, showing potential applications for biomedical diagnosis and environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Keilin D, Mann T. Some properties of laccase from the latex of lacquer trees. Nature. 1940;145(3669):304.

    Article  CAS  Google Scholar 

  2. TissiÈRes A. Constitution and properties of laccase. Nature. 1949;163(4143):480.

    Article  PubMed  Google Scholar 

  3. Lou X, Zhi F, Sun X, Wang F, Hou X, Lv C, Hu Q. Construction of co-immobilized laccase and mediator based on MOFs membrane for enhancing organic pollutants removal. Chem Eng J. 2023;451:138080.

    Article  CAS  Google Scholar 

  4. Rubenwolf S, Strohmeier O, Kloke A, Kerzenmacher S, Zengerle R, von Stetten F. Carbon electrodes for direct electron transfer type laccase cathodes investigated by current density-cathode potential behavior. Biosens Bioelectron. 2010;26(2):841–5.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang F, Lian M, Alhadhrami A, Huang M, Li B, Mersal GAM, Ibrahim MM, Xu M. Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenol a degradation from polluted water. Adv Compos Hybrid Ma. 2022;5(3):1852–64.

    Article  CAS  Google Scholar 

  6. Xu S, Wu H, Liu S, Du P, Wang H, Yang H, Xu W, Chen S, Song L, Li J, Shi X, Wang Z-G. A supramolecular metalloenzyme possessing robust oxidase-mimetic catalytic function. Nat Commun. 2023;14(1):4040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rodríguez-Delgado MM, Alemán-Nava GS, Rodríguez-Delgado JM, Dieck-Assad G, Martínez-Chapa SO, Barceló D, Parra R. Laccase-based biosensors for detection of phenolic compounds. TRAC-Trend Anal Chem. 2015;74:21–45.

    Article  Google Scholar 

  8. Liang S, Wu X-L, Xiong J, Yuan X, Liu S-L, Zong M-H, Lou W-Y. Multivalent Ce-MOFs as biomimetic laccase nanozyme for environmental remediation. Chem Eng J. 2022;450:138220.

    Article  CAS  Google Scholar 

  9. Fernandez-Fernandez M, Sanroman MA, Moldes D. Recent developments and applications of immobilized laccase. Biotechnol Adv. 2013;31(8):1808–25.

    Article  CAS  PubMed  Google Scholar 

  10. Guo S, Li H, Liu J, Yang Y, Kong W, Qiao S, Huang H, Liu Y, Kang Z. Visible-light-induced effects of au nanoparticle on laccase catalytic activity. ACS Appl Mater Interfaces. 2015;7(37):20937–44.

    Article  CAS  PubMed  Google Scholar 

  11. Jones SM, Solomon EI. Electron transfer and reaction mechanism of laccases. Cell Mol Life Sci. 2015;72(5):869–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xia Y, Xia L, Lin X. Laccase-based self-amplifying catalytic system enables efficient antibiotic degradation for sustainable environmental remediation. Adv Sci. 2023;10(21):2300210.

    Article  CAS  Google Scholar 

  13. Hitaishi VP, Clément R, Quattrocchi L, Parent P, Duché D, Zuily L, Ilbert M, Lojou E, Mazurenko I. Interplay between orientation at electrodes and copper activation of Thermus thermophilus laccase for O2 reduction. J Am Chem Soc. 2019;142(3):1394–405.

    Article  Google Scholar 

  14. Singha A, Sekretareva A, Tao L, Lim H, Ha Y, Braun A, Jones SM, Hedman B, Hodgson KO, Britt RD, Kosman DJ, Solomon EI. Tuning the type 1 reduction potential of multicopper oxidases: uncoupling the effects of electrostatics and H-bonding to histidine ligands. J Am Chem Soc. 2023;145(24):13284–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tran TD, Nguyen PT, Le TN, Kim MI. DNA-copper hybrid nanoflowers as efficient laccase mimics for colorimetric detection of phenolic compounds in paper microfluidic devices. Biosens Bioelectron. 2021;182:113187.

    Article  CAS  PubMed  Google Scholar 

  16. Brissos V, Borges PT, Nunez-Franco R, Lucas MF, Frazao C, Monza E, Masgrau L, Cordeiro TN, Martins LO. Distal mutations shape substrate-binding sites during evolution of a metallo-oxidase into a laccase. ACS Catal. 2022;12(9):5022–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castrovilli MC, Bolognesi P, Chiarinelli J, Avaldi L, Calandra P, Antonacci A, Scognamiglio V. The convergence of forefront technologies in the design of laccase-based biosensors - an update. TRAC-Trend Anal Chem. 2019;119:115615.

    Article  CAS  Google Scholar 

  18. Lassouane F, Ait-Amar H, Amrani S, Rodriguez-Couto S. A promising laccase immobilization approach for bisphenol A removal from aqueous solutions. Bioresour Technol. 2019;271:360–7.

    Article  CAS  PubMed  Google Scholar 

  19. Mahmoodi NM, Saffar-Dastgerdi MH. Clean laccase immobilized nanobiocatalysts (graphene oxide-zeolite nanocomposites): from production to detailed biocatalytic degradation of organic pollutant. Appl Catal B-environ. 2020;268:118443.

    Article  CAS  Google Scholar 

  20. Zhou W, Zhang W, Cai Y. Laccase immobilization for water purification: a comprehensive review. Chem Eng J. 2021;403:126272.

    Article  CAS  Google Scholar 

  21. Niu X, Wu L, Wu F, Guan J, Wang H. Electron coupling effect-triggered monatomic copper laccase-mimicking nanozyme for the degradation and detection of guaiacol produced by Alicyclobacillus acidoterrestris. Biosens Bioelectron. 2023;238:115606.

    Article  CAS  PubMed  Google Scholar 

  22. Cui H, Zhang L, Söder D, Tang X, Davari MD, Schwaneberg U. Rapid and oriented immobilization of laccases on electrodes via a methionine-rich peptide. ACS Catal. 2021;11(4):2445–53.

    Article  CAS  Google Scholar 

  23. Cao P, Liu H, Wu D, Wang X. Immobilization of laccase on phase-change microcapsules as self-thermoregulatory enzyme carrier for biocatalytic enhancement. Chem Eng J. 2021;405:126695.

    Article  CAS  Google Scholar 

  24. Wang K-Y, Zhang J, Hsu Y-C, Lin H, Han Z, Pang J, Yang Z, Liang R-R, Shi W, Zhou H-C. Bioinspired framework catalysts: from enzyme immobilization to biomimetic catalysis. Chem Rev. 2023;123(9):5347–420.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Ge J, Liu Z. Enhanced activity of immobilized or chemically modified enzymes. ACS Catal. 2015;5(8):4503–13.

    Article  Google Scholar 

  26. Wan J, Zhang L, Yang B, Jia B, Yang J, Su X. Enzyme immobilization on amino-functionalized Fe3O4@SiO2 via electrostatic interaction with enhancing biocatalysis in sludge dewatering. Chem Eng J. 2022;427:131976.

    Article  CAS  Google Scholar 

  27. Datta S, Veena R, Samuel MS, Selvarajan E. Immobilization of laccases and applications for the detection and remediation of pollutants: a review. Environ Chem Lett. 2020;19(1):521–38.

    Article  Google Scholar 

  28. Daronch NA, Kelbert M, Pereira CS, de Araújo PHH, de Oliveira D. Elucidating the choice for a precise matrix for laccase immobilization: a review. Chem Eng J. 2020;397:125506.

    Article  CAS  Google Scholar 

  29. Li X, Wu Z, Tao X, Li R, Tian D, Liu X. Gentle one-step co-precipitation to synthesize bimetallic CoCu-MOF immobilized laccase for boosting enzyme stability and Congo red removal. J Hazard Mater. 2022;438:129525.

    Article  CAS  PubMed  Google Scholar 

  30. Peng J, Wu E, Lou X, Deng Q, Hou X, Lv C, Hu Q. Anthraquinone removal by a metal-organic framework/polyvinyl alcohol cryogel-immobilized laccase: effect and mechanism exploration. Chem Eng J. 2021;418:129473.

    Article  CAS  Google Scholar 

  31. Huang W, Zhang W, Gan Y, Yang J, Zhang S. Laccase immobilization with metal-organic frameworks: current status, remaining challenges and future perspectives. Crit Rev Env Sci Tec. 2020;52(8):1282–324.

    Article  Google Scholar 

  32. Liang M, Yan X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190–200.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Z, Zhang R, Yan X, Fan K. Structure and activity of nanozymes: inspirations for de novo design of nanozymes. Mater Today. 2020;41:81–119.

    Article  CAS  Google Scholar 

  34. Liu Y, Liu L, Qu Z, Yu L, Sun Y. Supramolecular assembly of benzophenone alanine and copper presents high laccase-like activity for the degradation of phenolic pollutants. J Hazard Mater. 2023;443:130198.

    Article  CAS  PubMed  Google Scholar 

  35. Le TN, Le XA, Tran TD, Lee KJ, Kim MI. Laccase-mimicking Mn-Cu hybrid nanoflowers for paper-based visual detection of phenolic neurotransmitters and rapid degradation of dyes. J Nanobiotechnol. 2022;20(1):358.

    Article  CAS  Google Scholar 

  36. Xu W, Zhang Y, Zhang X, Xu X, Wang Q. One stone, two birds: a Cu-S cluster as a laccase-mimicking nanozyme and sulfite activator for phenol remediation in marine environments. J Hazard Mater. 2023;457:131776.

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Huang R, Qi W, Su R, Binks BP, He Z. Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl Catal B-environ. 2019;254:452–62.

    Article  CAS  Google Scholar 

  38. Zhang X, Wu D, Wu Y, Li G. Bioinspired nanozyme for portable immunoassay of allergenic proteins based on a smartphone. Biosens Bioelectron. 2021;172:112776.

    Article  CAS  PubMed  Google Scholar 

  39. Tang Y, Jiang S, Li W, Jalil Shah S, Zhao Z, Pan L, Zhao Z. Confined construction of COF@Cu-nanozyme with high activity and stability as laccase biomimetic catalyst for the efficient degradation of phenolic pollutants. Chem Eng J. 2022;448:137701.

    Article  CAS  Google Scholar 

  40. Makam P, Yamijala S, Bhadram VS, Shimon LJW, Wong BM, Gazit E. Single amino acid bionanozyme for environmental remediation. Nat Commun. 2022;13(1):1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koyappayil A, Kim HT, Lee MH. ‘Laccase-like’ properties of coral-like silver citrate micro-structures for the degradation and determination of phenolic pollutants and adrenaline. J Hazard Mater. 2021;412:125211.

    Article  CAS  PubMed  Google Scholar 

  42. Liang H, Lin F, Zhang Z, Liu B, Jiang S, Yuan Q, Liu J. Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl Mater Interfaces. 2017;9(2):1352–60.

    Article  CAS  PubMed  Google Scholar 

  43. Wang J, Huang R, Qi W, Su R, He Z. Preparation of amorphous MOF based biomimetic nanozyme with high laccase- and catecholase-like activity for the degradation and detection of phenolic compounds. Chem Eng J. 2022;434:134677.

    Article  CAS  Google Scholar 

  44. Li M, Chen J, Wu W, Fang Y, Dong S. Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. J Am Chem Soc. 2020;142(36):15569–74.

    Article  CAS  PubMed  Google Scholar 

  45. Liu S, Liu G, Yang L, Li D, Zheng M. Critical influences of metal compounds on the formation and stabilization of environmentally persistent free radicals. Chem Eng J. 2022;427:131666.

    Article  CAS  Google Scholar 

  46. Zhou Y, Chen X, Zhan S, Wang Q, Deng F, Wu Q, Peng J. Stabilized and controlled release of radicals within copper formate-based nanozymes for biosensing. ACS Appl Mater Interfaces. 2023;15(37):43431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang R, Yan X, Fan K. Nanozymes inspired by natural enzymes. Acc Mater Res. 2021;2(7):534–47.

    Article  CAS  Google Scholar 

  48. Lin Y, Wang F, Yu J, Zhang X, Lu GP. Iron single-atom anchored N-doped carbon as a ‘laccase-like’ nanozyme for the degradation and detection of phenolic pollutants and adrenaline. J Hazard Mater. 2022;425:127763.

    Article  CAS  PubMed  Google Scholar 

  49. Mohtashami M, Fooladi J, Haddad-Mashadrizeh A, Housaindokht MR, Monhemi H. Molecular mechanism of enzyme tolerance against organic solvents: insights from molecular dynamics simulation. Int J Biol Macromol. 2019;122:914–23.

    Article  CAS  PubMed  Google Scholar 

  50. Radhakrishnan R, Manna B, Ghosh A. Solvent induced conformational changes for the altered activity of laccase: a molecular dynamics study. J Hazard Mater. 2022;423:127123.

    Article  CAS  PubMed  Google Scholar 

  51. Levy B, Clere-Jehl R, Legras A, Morichau-Beauchant T, Leone M, Frederique G, Quenot J-P, Kimmoun A, Cariou A, Lassus J, Harjola V-P, Meziani F, Louis G, Rossignol P, Duarte K, Girerd N, Mebazaa A, Vignon P, Mattei M, Thivilier C, Perez P, Auchet T, Fritz C, Boisrame-Helme J, Mercier E, Garot D, Perny J, Gette S, Hammad E, Vigne C, Dargent A, Andreu P, Guiot P. Epinephrine versus norepinephrine for cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol. 2018;72(2):173–82.

    Article  CAS  PubMed  Google Scholar 

  52. Fatma S, Prasad BB, Jaiswal S, Singh R, Singh K. Electrochemical simultaneous analysis of dopamine and epinephrine using double imprinted One MoNomer acryloylated graphene oxide-carbon black composite polymer. Biosens Bioelectron. 2019;135:36–44.

    Article  CAS  PubMed  Google Scholar 

  53. Křen V, Bojarová P. Rutinosidase and other diglycosidases: rising stars in biotechnology. Biotechnol Adv. 2023;68:108217.

    Article  PubMed  Google Scholar 

  54. Li M-Y, Niu X, Pei W-Y, Xu H-L, Ma J-F. Synthesis of sulfonylcalix[4]arene complexes and research on electrochemical detection of rutin by the composites of the complexes with multi-walled carbon nanotubes. Chem Eng J. 2023;470:144060.

    Article  CAS  Google Scholar 

  55. Ouyang Q, Liu K, Zhu Q, Deng H, Le Y, Ouyang W, Yan X, Zhou W, Tong J. Brain-penetration and neuron-targeting DNA nanoflowers co-delivering miR-124 and rutin for synergistic therapy of Alzheimer’s disease. Small. 2022;18(14):2107534.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21905237 and 82302275), the National Key Research and Development (R&D) Program of China (No. 2022YFB3805604), the Fundamental Research Funds for the Central Universities (WUT: 2022IVA160 and 2022IVA089), the Young Top-notch Talent Cultivation Program of Hubei Province (Grant No. 40129014), and the 7th Yong elite scientist sponsorship program by CAST (No. YESS20210191).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tong Qiu or Jian Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Nanozymes with guest editors Vipul Bansal, Sudipta Seal, and Hui Wei.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8764 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Zhou, Y., Qiu, T. et al. Copper formate–lysine nanoparticles with polyphenol oxidase-like activity for the detection of epinephrine. Anal Bioanal Chem (2023). https://doi.org/10.1007/s00216-023-05095-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-023-05095-7

Keywords

Navigation