Skip to main content
Log in

Detection of organic dyes using Ag NPAs/SMP SERS substrate produced via sandpaper template-assisted lithography and liquid–liquid interface self-assembly

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and reliable fingerprinting technique. However, its analytical capability is closely related to the quality of a SERS substrate used for the analysis. In particular, conventional colloidal substrates possess disadvantages in terms of controllability, stability, and reproducibility, which limit their application. In order to address these issues, a simple, cost-effective, and efficient SERS substrate based on silver nanoparticle arrays (Ag NPAs) and sandpaper-molded polydimethylsiloxane (SMP) was proposed in this work. Successfully prepared via template lithography and liquid–liquid interface self-assembly (LLISA), the substrate can be applied to the specific detection of organic dyes in the environment. The substrate exhibited good SERS performance, and the limit of detection (LOD) of rhodamine 6G (R6G) was shown to be 10−7 M under the optimal conditions (1000 grit sandpaper) with a relative standard deviation (RSD) of 7.76%. Moreover, the SERS signal intensity was maintained at 60% of the initial intensity after the substrate was stored for 30 days. In addition, the Ag NPAs/SMP SERS substrate was also employed to detect crystal violet (CV) and methylene blue (MB) with the LODs of 10−6 M and 10−7 M, respectively. In summary, the Ag NPAs/SMP SERS substrate prepared in this study has great potential for the detection of organic dyes in ecological environments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Petrus O, Macko J, Orinakova R, Orinak A, Mudra E, Kupkova M, Farka Z, Pastucha M, Socha V. Detection of organic dyes by surface-enhanced Raman spectroscopy using plasmonic NiAg nanocavity films. Spectrochim Acta A Mol Biomol Spectrosc. 2021;249: 119322.

    Article  PubMed  CAS  Google Scholar 

  2. Chen W, Wang W, Xing H, Li W, He H, Li W, Chu PK, Song G, Wang H, Li P. Interfacial self-assembled dual-functional nanocomposite films for SERS monitoring of visible-light photocatalytic degradation of organic dye pollutants. Surf Interfaces. 2023;38:102808.

  3. Guo L, Tian M, Li Z, Wang Q, Wu Q, Hao L, Wang C. Preparation of hypercrosslinked porous polymer with manifold functional groups for sensitive determination of phenylurea herbicides in beverages and celtuce samples. Food Chem. 2023;427:136674.

    Article  PubMed  CAS  Google Scholar 

  4. Murtada K, Bowman D, Edwards M, Pawliszyn J. Thin-film microextraction combined with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry screening for presence of multiclass organic pollutants in drinking water samples. Talanta. 2022;242:123301.

    Article  PubMed  CAS  Google Scholar 

  5. Shanmugam R, Alagumalai K, Chen S-M, Ganesan T. Electrochemical evaluation of organic pollutant estradiol in industrial effluents. J Environ Chem Eng. 2021;9(4):105723.

  6. Liu W, Qi J, Baharinikoo L, Anil Kumar TC, Al-qargholi B, Shafik SS. Magnesium ferrite as a dispersive solid-phase extraction sorbent for the determination of organic pollutants using spectrophotometry. J Mol Liq. 2023;382:121969.

  7. Xue Y, Shao J, Sui G, Ma Y, Li H. Rapid detection of orange II dyes in water with SERS imprinted sensor based on PDA-modified MOFs@Ag. J Environ Chem Eng. 2021;9(6):106317.

  8. Zong C, Xu M, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev. 2018;118(10):4946–80.

    Article  PubMed  CAS  Google Scholar 

  9. Zrimsek AB, Chiang N, Mattei M, Zaleski S, McAnally MO, Chapman CT, Henry AI, Schatz GC, Van Duyne RP. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem Rev. 2017;117(11):7583–613.

    Article  PubMed  CAS  Google Scholar 

  10. Xu L, Du X, Liu T, Sun D. In situ and dynamic SERS monitoring of glutathione levels during cellular ferroptosis metabolism. Anal Bioanal Chem. 2023;415:6145–53.

  11. Deng X, Wang S, Zhou W, Xu M, Chen B, Zhang W. Wrinkle-bioinspired silver nanowire surface enhanced Raman scattering sensors for pesticide molecule detection. Anal Bioanal Chem. 2023;415(16):3255–64.

    Article  PubMed  CAS  Google Scholar 

  12. Liao W, Wang Q, Hao J, Huang L, Zheng L, Yin Z, Chen Y, Zhou Y, Liu K. Molecularly imprinted 3D SERS sensor with inorganic frameworks for specific and recyclable SERS sensing application. Mikrochim Acta. 2023;190(2):50.

    Article  PubMed  CAS  Google Scholar 

  13. Luo X, Liu W, Chen C, Jiang G, Hu X, Zhang H, Zhong M. Femtosecond laser micro-nano structured Ag SERS substrates with unique sensitivity, uniformity and stability for food safety evaluation. Opt Laser Technol. 2021;139:106969.

  14. Lv K, Si H, Liu J, Zhu T, Xia Y, Chen S, Zhao Y, Yang C. Plasmonic filters based on MoS2@Au/Ag hybrids: controllable separation, preconcentration, and sensitive SERS detection. J Alloys Compd. 2020;846:156438.

  15. Sun H, Li X, Hu Z, Gu C, Chen D, Wang J, Li B, Jiang T, Zhou X. Hydrophilic-hydrophobic silver nanowire-paper based SERS substrate for in-situ detection of furazolidone under various environments. Appl Surf Sci. 2021;556:149748.

  16. Xu Y, He P, Ahmad W, Hassan MM, Ali S, Li H, Chen Q. Catalytic hairpin activated gold-magnetic/gold-core-silver-shell rapid self-assembly for ultrasensitive Staphylococcus aureus sensing via PDMS-based SERS platform. Biosens Bioelectron. 2022;209:114240.

    Article  PubMed  CAS  Google Scholar 

  17. Chen T, Wang H, Chen G, Wang Y, Feng Y, Teo WS, Wu T, Chen H. Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints. ACS Nano. 2010;4:3087–94.

  18. Mehl H, Oliveira MM, Zarbin AJG. Thin and transparent films of graphene/silver nanoparticles obtained at liquid-liquid interfaces: preparation, characterization and application as SERS substrates. J Colloid Interface Sci. 2015;438:29–38.

    Article  PubMed  CAS  Google Scholar 

  19. Pinkhasova P, Yang L, Zhang Y, Sukhishvili S, Du H. Differential SERS activity of gold and silver nanostructures enabled by adsorbed poly(vinylpyrrolidone). Langmuir. 2012;28(5):2529–35.

    Article  PubMed  CAS  Google Scholar 

  20. Figueiredo MLB, Martin CS, Furini LN, Rubira RJG, Batagin-Neto A, Alessio P, Constantino CJL. Surface-enhanced Raman scattering for dopamine in Ag colloid: adsorption mechanism and detection in the presence of interfering species. Appl Surf Sci. 2020;522:146466.

  21. Zhang D, Tang L, Chen J, Tang Z, Liang P, Huang Y, Cao M, Zou M, Ni D, Chen J, Yu Z, Jin S. Controllable self-assembly of SERS hotspots in liquid environment. Langmuir. 2021;37(2):939–48.

    Article  PubMed  CAS  Google Scholar 

  22. Wang L, Sun Y, Che G, Li Z. Self-assembled silver nanoparticle films at an air–liquid interface and their applications in SERS and electrochemistry. Appl Surf Sci. 2011;257(16):7150–5.

    Article  CAS  Google Scholar 

  23. Yao X, Jiang S, Luo S, Liu BW, Huang TX, Hu S, Zhu J, Wang X, Ren B. Uniform periodic bowtie SERS substrate with narrow nanogaps obtained by monitored pulsed electrodeposition. ACS Appl Mater Interfaces. 2020;12(32):36505–12.

    Article  PubMed  CAS  Google Scholar 

  24. Waiwijit U, Chananonnawathorn C, Eimchai P, Bora T, Hornyak GL, Nuntawong N. Fabrication of Au-Ag nanorod SERS substrates by co-sputtering technique and dealloying with selective chemical etching. Appl Surf Sci. 2020;530:147171.

  25. Wang X, Zhu J, Wu Y, Xu Y, Su Y, Zhang L, Qi Y, Wen X, Yang H. Hybrid surface plasmon effect and SERS characterization in a heterogeneous composite structure of Au nano-array and Ag film. Results Phys. 2020;17:103175.

  26. Kasani S, Curtin K, Wu N. A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics. 2019;8(12):2065–89.

    Article  CAS  Google Scholar 

  27. Cai J, Wang Z, Wang M, Zhang D. Au nanoparticle-grafted hierarchical pillars array replicated from diatom as reliable SERS substrates. Appl Surf Sci. 2021;541:148374.

  28. Lee T, Kwon S, Jung S, Lim H, Lee J-J. Macroscopic Ag nanostructure array patterns with high-density hotspots for reliable and ultra-sensitive SERS substrates. Nano Res. 2019;12(10):2554–8.

    Article  CAS  Google Scholar 

  29. Teng Y, Zhang Y, Ren Z, Wang Z, Liu W, Shao K, Pan Z. Rapid water/oil interfacial self-assembled Au monolayer nanofilm by simple vortex mixing for surface-enhanced Raman scattering. New J Chem. 2019;43(20):7613–9.

    Article  CAS  Google Scholar 

  30. Yang F, Wen P, Li G, Zhang Z, Ge C, Chen L. High-performance surface-enhanced Raman spectroscopy chip integrated with a micro-optical system for the rapid detection of creatinine in serum. Biomed Opt Express. 2021;12(8):4795–806.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guo Q, Xu M, Yuan Y, Gu R, Yao J. Self-assembled large-scale monolayer of Au nanoparticles at the air/water interface used as a SERS substrate. Langmuir. 2016;32(18):4530–7.

    Article  PubMed  CAS  Google Scholar 

  32. Shi S, Russell TP. Nanoparticle assembly at liquid-liquid interfaces: from the nanoscale to mesoscale. Adv Mater. 2018;30(44): e1800714.

    Article  PubMed  Google Scholar 

  33. Jamali SB, Khaskheli MA, Abro MI, Chand R, Rekik N, Affan H, Ikram R. Confirming the SERS enhancement at large mapping area using self-assembly of silver nanocube at liquid-liquid cyclohexane/water interface. J Mol Liq. 2021;326:115365.

  34. Liu C, Wang S, Dong X, Huang Q. Flexible and transparent SERS substrates composed of Au@Ag nanorod arrays for in situ detection of pesticide residues on fruit and vegetables. Chemosensors. 2022;10(10):423.

  35. Xu S, Li H, Guo M, Wang L, Li X, Xue Q. Liquid-liquid interfacial self-assembled triangular Ag nanoplate-based high-density and ordered SERS-active arrays for the sensitive detection of dibutyl phthalate (DBP) in edible oils. Analyst. 2021;146(15):4858–64.

    Article  PubMed  CAS  Google Scholar 

  36. Moldovan R, Toma V, Iacob BC, Stiufiuc RI, Bodoki E. Off-resonance gold nanobone films at liquid interface for SERS applications. Sensors (Basel). 2022;22(1):236.

  37. Tang C, Long G, Hu X, Wong KW, Lau WM, Fan M, Mei J, Xu T, Wang B, Hui D. Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres. Nanoscale. 2014;6(14):7877–88.

    Article  PubMed  CAS  Google Scholar 

  38. Yuan D, Chen S, Wu Y, Wang J. A facile surface enhanced Raman scattering substrate based on silver deposited sandpaper. Mod Phys Lett B. 2019;33(21):1950239.

  39. Shinki, Sarkar S. Is 3D surface structuring always a prerequisite for effective SERS? Surfaces and Interfaces. 2022;33:102223.

  40. Chen KH, Pan MJ, Jargalsaikhan Z, Ishdorj TO, Tseng FG. Development of surface-enhanced Raman scattering (SERS)-based surface-corrugated nanopillars for biomolecular detection of colorectal cancer. Biosensors (Basel). 2020;10(11):163.

  41. Sun J, Gong L, Gong Z, Wang D, Yin X, Fan M. Facile fabrication of a large-area and cost-effective PDMS-SERS substrate by sandpaper template-assisted lithography. Anal Methods. 2019;11(38):4917–22.

    Article  CAS  Google Scholar 

  42. Zhan H, Cheng F, Chen Y, Wong KW, Mei J, Hui D, Lau WM, Liu Y. Transfer printing for preparing nanostructured PDMS film as flexible SERS active substrate. Compos B Eng. 2016;84:222–7.

    Article  CAS  Google Scholar 

  43. Cheng Y-W, Hsiao C-W, Zeng Z-L, Syu W-L, Liu T-Y. The interparticle gap manipulation of Au-Ag nanoparticle arrays deposited on flexible and atmospheric plasma-treated PDMS substrate for SERS detection. Surf Coat Technol. 2020;389:125653.

  44. Ma Y, Du Y, Chen Y, Gu C, Jiang T, Wei G, Zhou J. Intrinsic Raman signal of polymer matrix induced quantitative multiphase SERS analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires. Chem Eng J. 2020;381:122710.

  45. Xu K, Zhou R, Takei K, Hong M. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv Sci (Weinh). 2019;6(16):1900925.

    Article  PubMed  Google Scholar 

  46. Yang Z, Wang W, Bi L, Chen L, Wang G, Chen G, Ye C, Pan J. Wearable electronics for heating and sensing based on a multifunctional PET/silver nanowire/PDMS yarn. Nanoscale. 2020;12(31):16562–9.

    Article  PubMed  CAS  Google Scholar 

  47. Tan Y, Yang K, Zhang X, Zhou Z, Xu Y, Xie A, Xue C. Stretchable and flexible micro-nano substrates for SERS detection of organic dyes. ACS Omega. 2023;8(16):14541–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wen P, Yang F, Hu X, Xu Y, Wan S, Chen L. Optimized design and preparation of Ag nanoparticle multilayer SERS substrates with excellent sensing performance. Biosensors. 2022;13(1):52.

  49. Zheng J, Yan J, Qi X, Zhang X, Li Y, Zou M. AgNPs and MIL-101(Fe) self-assembled nanometer materials improved the SERS detection sensitivity and reproducibility. Spectrochim Acta A Mol Biomol Spectrosc. 2021;251:119396.

    Article  PubMed  CAS  Google Scholar 

  50. Yuan Y, Bi S, Zhang F, Wang Y, Yang B, Ren Z, Li X. Rapid determination of isepamicin by using SERS based on BSA-protected AgNPs modified by alpha-Fe(2)O(3). Spectrochim Acta A Mol Biomol Spectrosc. 2023;285:121942.

    Article  PubMed  CAS  Google Scholar 

  51. Shao D, Bi S, Zhao R, Sun X, Li X, Yu J. Selective determination of dinitolmide and toltrazuril by surface-enhanced Raman spectroscopy (SERS) using AgNPs as substrate. Sensors Actuators B Chem. 2020;307:127644.

  52. Liu J, Li J, Li F, Zhou Y, Hu X, Xu T, Xu W. Liquid-liquid interfacial self-assembled Au NP arrays for the rapid and sensitive detection of butyl benzyl phthalate (BBP) by surface-enhanced Raman spectroscopy. Anal Bioanal Chem. 2018;410(21):5277–85.

    Article  PubMed  CAS  Google Scholar 

  53. Wang M, Zhang Z, He J. A SERS study on the assembly behavior of gold nanoparticles at the oil/water interface. Langmuir. 2015;31(47):12911–9.

    Article  PubMed  CAS  Google Scholar 

  54. Vu TD, Duy PK, Chung H. Nickel foam–caged Ag-Au bimetallic nanostructure as a highly rugged and durable SERS substrate. Sensors Actuators B Chem. 2019;282:535–40.

    Article  CAS  Google Scholar 

  55. Paloly AR, Anju KS, Bushiri MJ. High sensitive and reusable SERS substrate based on Ag/SnO2 nanocone arrayed thin film. Plasmonics. 2022;17(5):2187–96.

    Article  CAS  Google Scholar 

  56. Tiwari M, Singh A, Thakur D, Pattanayek SK. Graphitic carbon nitride-based concoction for detection of melamine and R6G using surface-enhanced Raman scattering. Carbon. 2022;197:311–23.

    Article  CAS  Google Scholar 

  57. Wang J, Qiu C, Mu X, Pang H, Chen X, Liu D. Ultrasensitive SERS detection of rhodamine 6G and p-nitrophenol based on electrochemically roughened nano-Au film. Talanta. 2020;210: 120631.

    Article  PubMed  CAS  Google Scholar 

  58. Chang Y, Liang P, Dong Q-m, Zhang D, Xia J, Zhou Y-f, Yu Z, Huang J, Ni D, Jin S. Highly sensitivity and homogeneous SERS platforms based on 3D-GNF/AgNPs hybrid structures. Mater Res Express. 2019;6:055033.

  59. Fang H, Zhang CX, Liu L, Zhao YM, Xu HJ. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering. Biosens Bioelectron. 2015;64:434–41.

    Article  PubMed  CAS  Google Scholar 

  60. Song Y, Peng Y, Long NV, Huang Z, Yang Y. Multifunctional self-assembly 3D Ag/g-C3N4/RGO aerogel as highly efficient adsorbent and photocatalyst for R6G removal from wastewater. Appl Surf Sci. 2021;542:148584.

  61. Shi G, Wang M, Zhu Y, Shen L, Wang Y, Ma W, Chen Y, Li R. A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/graphene oxide/cicada wing array. Opt Commun. 2018;412:28–36.

    Article  CAS  Google Scholar 

  62. Yang L, Hu J, He L, Tang J, Zhou Y, Li J, Ding K. One-pot synthesis of multifunctional magnetic N-doped graphene composite for SERS detection, adsorption separation and photocatalytic degradation of rhodamine 6G. Chem Eng J. 2017;327:694–704.

    Article  CAS  Google Scholar 

  63. Li J, Yan H, Tan X, Lu Z, Han H. Cauliflower-inspired 3D SERS substrate for multiple mycotoxins detection. Anal Chem. 2019;91(6):3885–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This paper was financially supported by the National Natural Science Foundation of China (grant no.12172002) and the Key Research and Development Program Projects in Anhui Province (grant no. 202004h07020026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changguo Xue.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 228 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Zhou, Z., Xu, Y. et al. Detection of organic dyes using Ag NPAs/SMP SERS substrate produced via sandpaper template-assisted lithography and liquid–liquid interface self-assembly. Anal Bioanal Chem 416, 1047–1056 (2024). https://doi.org/10.1007/s00216-023-05094-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05094-8

Keywords

Navigation