Skip to main content
Log in

Investigation of metabolite alterations in the kidneys of methionine-choline-deficient mouse by mass spectrometry imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Methionine and choline both are essential nutrients which are needed for methyl group metabolism. A methionine-choline-deficient (MCD) diet leads to pathological changes in the kidney. The mechanism of the MCD diet is complex, and fundamental research is still required to provide a better understanding of the driving forces behind it. We evaluated the regional effects of the MCD diet on the metabolites of mouse kidney tissue using desorption electrospray ionization mass spectrometry imaging technology. A total of 20, 17, and 13 metabolites were significantly changed in the cortex, outer medulla, and inner medulla, respectively, of the mouse kidney tissue after the administration of the MCD diet. Among the discriminating metabolites, only three metabolites (guanidoacetic acid, serine, and nicotinamide riboside) were significantly increased, and all the other metabolites showed a significant decrease. The results showed that there were significant region-specific changes in the serine metabolism, carnitine metabolism, choline metabolism, and arginine metabolism. This study presents unique regional metabolic data, providing a more comprehensive understanding of the molecular characteristics of the MCD diet in the kidney.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MCD:

Methionine-choline-deficient

MSI:

Mass spectrometry imaging

DESI-MSI:

Desorption electrospray ionization mass spectrometry imaging

H&E:

Hematoxylin and eosin

GPC:

Glycerophosphocholine

References

  1. Marí M, Colell A, Morales A, Von Montfort C, Garcia-Ruiz C, Fernández-Checa JC. Redox control of liver function in health and disease. Antioxid Redox Signal. 2010;12:1295–331. https://doi.org/10.1089/ars.2009.2634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Qasem H, Al-Ayadhi L, Al Dera H, El-Ansary A. Increase of cytosolic phospholipase A2 as hydrolytic enzyme of phospholipids and autism cognitive, social and sensory dysfunction severity. Lipids Health Dis. 2017;16:117. https://doi.org/10.1186/s12944-016-0391-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hamlin JC, Pauly M, Melnyk S, Pavliv O, Starrett W, Crook TA, et al. Dietary intake and plasma levels of choline and betaine in children with autism spectrum disorders. Autism Res Treat. 2013;2013:578429. https://doi.org/10.1155/2013/578429.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Veskovic M, Mladenovic D, Jorgacevic B, Stevanovic I, Luka S, Radosavljevic T. Alpha-lipoic acid affects the oxidative stress in various brain structures in mice with methionine and choline deficiency. Exp Biol Med. 2015;240:418–25. https://doi.org/10.1177/153537021454952.

    Article  CAS  Google Scholar 

  5. Zeisel SH, Dacosta KA, Franklin PD, Alexander AE, Lamont JT, Sheard NF, et al. Choline, an essential nutrient for humans. Faseb J. 1991;5:2093–8. https://doi.org/10.1096/fasebj.5.7.2010061.

    Article  PubMed  CAS  Google Scholar 

  6. Ossani G, Dalghi M, Repetto M. Oxidative damage lipid peroxidation in the kidney of choline-deficient rats. Front Biosci. 2007;12:1174–83. https://doi.org/10.2741/2135.

    Article  PubMed  CAS  Google Scholar 

  7. Ossani GP, Repetto MG, Boveris A, Monserrat AJ. The protective effect of menhaden oil in the oxidative damage and renal necrosis due to dietary choline deficiency. Food Funct. 2013;4:448–52. https://doi.org/10.1039/C2FO30229B.

    Article  PubMed  CAS  Google Scholar 

  8. Laho T, Clarke JD, Dzierlenga AL, Li H, Klein DM, Goedken M, et al. Effect of nonalcoholic steatohepatitis on renal filtration and secretion of adefovir. Biochem Pharmacol. 2016;115:144–51. https://doi.org/10.1016/j.bcp.2016.07.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gong M, Lu H, Li L, Feng M, Zou Z. Integration of transcriptomics and metabonomics revealed the protective effects of hemp seed oil against methionine–choline-deficient diet-induced non-alcoholic steatohepatitis in mice. Food Funct. 2023;14:2096–111. https://doi.org/10.1039/D2FO03054C.

    Article  PubMed  CAS  Google Scholar 

  10. He D, Su Y, Meng D, Wang X, Wang J, Ye H. A pilot study optimizing metabolomic and lipidomic acquisition in serum for biomarker discovery in nonalcoholic fatty liver disease. J Mass Spectrom Adv Clin Lab. 2021;22:17–25. https://doi.org/10.1016/j.jmsacl.2021.10.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lim YJ, Tonial NC, Hartjes ED, Haig A, Velenosi TJ, Urquhart BL. Metabolomics for the identification of early biomarkers of nephrotoxicity in a mouse model of cisplatin-induced acute kidney injury. Biomed Pharmacother. 2023;163:114787. https://doi.org/10.1016/j.biopha.2023.114787.

    Article  PubMed  CAS  Google Scholar 

  12. Bai LN, Wang YZ, Zhang L, Liu YY, Chen SJ, Xie XM, et al. In situ metabolomics of metabolic reprogramming involved in a mouse model of type 2 diabetic kidney disease. Front Physiol. 2021;12:779683. https://doi.org/10.3389/fphys.2021.779683.

    Article  Google Scholar 

  13. Bergman HM, Lindfors L, Palm F, Kihlberg J, Lanekoff I. Metabolite aberrations in early diabetes detected in rat kidney using mass spectrometry imaging. Anal Bioanal Chem. 2019;411:2809–16. https://doi.org/10.1007/s00216-019-01721-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang JL, Li SQ, Lin JQ, Yu WD, Eberlin LS. Mass spectrometry imaging enables discrimination of renal oncocytoma from renal cell cancer subtypes and normal kidney tissues. Cancer Res. 2020;80:689–98. https://doi.org/10.1158/0008-5472.CAN-19-2522.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang X, Liu Y, Yang S, Gao X, Wang S, Wang Z, et al. Comparison of local metabolic changes in diabetic rodent kidneys using mass spectrometry imaging. Metabolites. 2023;13:324. https://doi.org/10.3390/metabo13030324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wiseman JM, Ifa DR, Zhu YX, Kissinger CB, Manicke NE, Kissinger PT, et al. Desorption electrospray ionization mass spectrometry imaging drugs and metabolites in tissues. Proc Natl Acad Sci USA. 2008;105:18120–5. https://doi.org/10.1073/pnas.0801066105.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ellis SR, Wu CP, Deeley JM, Zhu XJ, Truscott RJW, Panhuis MIH, et al. Imaging of human lens lipids by desorption electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2010;21:2095–104. https://doi.org/10.1016/j.jasms.2010.09.003.

    Article  PubMed  CAS  Google Scholar 

  18. Wang X, Hou Y, Hou Z, Xiong W, Huang G. Mass spectrometry imaging of brain cholesterol and metabolites with trifluoroacetic acid-enhanced desorption electrospray ionization. Anal Chem. 2019;91:2719–26. https://doi.org/10.1021/acs.analchem.8b04395.

    Article  PubMed  CAS  Google Scholar 

  19. Wang X, Yang X, Hou Z, Tian S, Xu G, Li J, et al. Whole-brain mapping of metabolic alterations in a mouse model of Alzheimer’s disease by desorption electrospray ionization mass spectrometry imaging. Talanta. 2023;253:124046. https://doi.org/10.1016/j.talanta.2022.124046.

    Article  CAS  Google Scholar 

  20. Tillner J, McKenzie JS, Jones EA, Speller AVM, Walsh JL, Veselkov KA, et al. Investigation of the impact of desorption electrospray ionization sprayer geometry on its performance in imaging of biological tissue. Anal Chem. 2016;88:4808–16. https://doi.org/10.1021/acs.analchem.6b00345.

    Article  PubMed  CAS  Google Scholar 

  21. Sogaard SB, Andersen SB, Taghavi I, Hoyos CAV, Christoffersen C, Hansen KL, et al. Super-resolution ultrasound imaging provides quantification of the renal cortical and medullary vasculature in obese Zucker rats: a pilot study. Diagnostics. 2022;12:1626. https://doi.org/10.3390/diagnostics12071626.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boch J, Kempf B, Bremer E. Osmoregulation in bacillus-subtilis-synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol. 1994;176:5364–71. https://doi.org/10.1128/jb.176.17.5364-5371.1994.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ilozumba MN, Cheng TYD, Neuhouser ML, Miller JW, Beresford SAA, Duggan DJ, et al. Associations between plasma choline metabolites and genetic polymorphisms in one-carbon metabolism in postmenopausal women: the women’s health initiative observational study. J Nutr. 2020;150:2874–81. https://doi.org/10.1093/jn/nxaa266.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ahmad NA, Raizman M, Weizmann N, Wasek B, Arning E, Bottiglieri T, et al. Betaine attenuates pathology by stimulating lipid oxidation in liver and regulating phospholipid metabolism in brain of methioninecholine–deficient rats. 2019;33:9334–49. https://doi.org/10.1096/fj.201802683R

  25. Penry JT, Manore MM. Choline: an important micronutrient for maximal endurance-exercise performance? Int J Sport Nutr Exerc Metab. 2008;18:191–203. https://doi.org/10.1123/ijsnem.18.2.191.

    Article  PubMed  CAS  Google Scholar 

  26. Ueland PM. Choline and betaine in health and disease. J Inherit Metab Dis. 2011;34:3–15. https://doi.org/10.1007/s10545-010-9088-4.

    Article  PubMed  CAS  Google Scholar 

  27. Bernhard W, Poets CF, Franz AR. Choline and choline-related nutrients in regular and preterm infant growth. Eur J Nutr. 2019;58:931–45. https://doi.org/10.1007/s00394-018-1834-7.

    Article  PubMed  CAS  Google Scholar 

  28. Bieber LL. Carnitine. Ann Rev Biochem. 1988;57:261–83. https://doi.org/10.1146/annurev.bi.57.070188.001401.

    Article  PubMed  CAS  Google Scholar 

  29. Zahedi E, Sadr S, Sanaeierad A, Roghani M. Chronic acetyl-L-carnitine treatment alleviates behavioral deficits and neuroinflammation through enhancing microbiota derived-SCFA in valproate model of autism. Biomed Pharmacother. 2023;163:114848. https://doi.org/10.1016/j.biopha.2023.114848.

    Article  PubMed  CAS  Google Scholar 

  30. Merritt JL II, Norris M, Kanungo S. Fatty acid oxidation disorders. Ann Transl Med. 2018;6:473. https://doi.org/10.21037/atm.2018.10.57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Li WW, Ma FF, Zhang LY, Huang Y, Li XH, Zhang AJ, et al. S-propargyl-cysteine exerts a novel protective effect on methionine and choline deficient diet-induced fatty liver via akt/Nrf2/HO-1 pathway. Oxid Med Cell Longev. 2016;2016:4690857. https://doi.org/10.1155/2016/4690857.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ferraretto A, Bottani M, Villa I, Giusto L, Signo M, Senesi P, et al. L-carnitine activates calcium signaling in human osteoblasts. J Funct Foods. 2018;47:270–8. https://doi.org/10.1016/j.jff.2018.05.068.

    Article  CAS  Google Scholar 

  33. Strilakou AA, Lazaris AC, Perelas AI, Mourouzis IS, Douzis IC, Karkalousos PL, et al. Heart dysfunction induced by choline-deficiency in adult rats: the protective role of L-carnitine. Eur J Pharmacol. 2013;709:20–7. https://doi.org/10.1016/j.ejphar.2013.03.025.

    Article  PubMed  CAS  Google Scholar 

  34. Mollica G, Senesi P, Codella R, Vacante F, Montesano A, Luzi L, et al. L-carnitine supplementation attenuates NAFLD progression and cardiac dysfunction in a mouse model fed with methionine and choline-deficient diet. Dig Liver Dis. 2020;52:314–23. https://doi.org/10.1016/j.dld.2019.09.002.

    Article  PubMed  CAS  Google Scholar 

  35. Gnoni A, Longo S, Gnoni GV, Giudetti AM. Carnitine in human muscle bioenergetics: can carnitine supplementation improve physical exercise? Molecules. 2020;25:182. https://doi.org/10.3390/molecules25010182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Peng KY, Watt MJ, Rensen S, Greve JW, Huynh K, Jayawardana KS, et al. Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression. J Lipid Res. 2018;59:1977–86. https://doi.org/10.1194/jlr.M085613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. de Miranda JL, Rodrigues BL, de Moura LC, da Rocha GS, Oliveira SD. Versatility of guanidoacetic acid coordination modes and synthesis of its new zinc complex. Results Chem. 2023;5:100785. https://doi.org/10.1016/j.rechem.2023.100785.

    Article  CAS  Google Scholar 

  38. Levillain O, Marescau B, Possemiers I, De Deyn PP. Accumulation of methylguanidine and changes in guanidino compound levels in plasma, urine, and kidneys of furosemide-treated rats. Metabolism. 2008;57:802–10. https://doi.org/10.1016/j.metabol.2008.01.025.

    Article  PubMed  CAS  Google Scholar 

  39. Ostojic SM. Guanidinoacetic acid as a performance-enhancing agent. Amino Acids. 2015;48:1867–75. https://doi.org/10.1007/s00726-015-2106-y.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Guangming Huang (University of Science and Technology of China) for the provision of Exactive Plus mass spectrometer and DESI platform.

Funding

This research was supported by the Anhui University of Chinese Medicine Talent Support Program (No.: 2022rcyb009), Anhui Provincial Natural Science Foundation (No.: 2108085J45), and Natural Science Research Project of Anhui Educational Committee (No.: 2022AH050498).

Author information

Authors and Affiliations

Authors

Contributions

XW: conceptualization, methodology, software, writing—original draft, data curation, investigation, project administration, visualization. YH: conceptualization, methodology, investigation, resources. WZ: conceptualization, methodology, resources. DW: resources, supervision, writing—review and editing.

Corresponding authors

Correspondence to Xiaoqun Wang or Dianlei Wang.

Ethics declarations

Ethics approval

The use of laboratory animals and all study protocols were approved by the Animal Protection Committee and Use Committee of Anhui University of Chinese Medicine.

Source of biological material

Male C57BL/6J mice were obtained from Jiangsu Huachuang Sino Pharmatech Co., Ltd..

Statement on animal welfare

The management and use of animals during the experiment comply with the relevant regulations of “Guide for the Care and Use of Laboratory Animals issued by the National Research Council of the United States (2010),” “Regulations for the administration of affairs concerning laboratory animals (2017)” issued by the Science and Technology Commission of China, and the relevant regulations provided by the Animal Protection Committee and Use Committee of Anhui University of Chinese Medicine.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5132 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hu, Y., Zhu, W. et al. Investigation of metabolite alterations in the kidneys of methionine-choline-deficient mouse by mass spectrometry imaging. Anal Bioanal Chem 416, 1011–1022 (2024). https://doi.org/10.1007/s00216-023-05091-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05091-x

Keywords

Navigation