Skip to main content
Log in

Portable smartphone-assisted highly sensitive detection of mercury ions based on gold nanoparticle-modified NH2-UiO-66 metal–organic framework

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel portable smartphone-assisted colorimetric method was reported for the determination of Hg2+ with good analytical performance. A Zr(IV)-based metal–organic framework functionalized with amino groups (NH2-UiO-66) has been adopted as a supporting platform to anchor gold nanoparticles (AuNPs), avoiding the migration and aggregation of AuNPs. With the addition of Hg2+, the formation of gold amalgam proved possible to enhance peroxidase-like activity of the composite (AuNPs/NH2-UiO-66), accelerating the oxidization of zymolyte 3,3′,5,5′-tetramethylbenzidine (TMB). In the meantime, the color of the reaction solution turned a vivid blue, and the red, green, and blue (RGB) values of the solution color changed accordingly. On account of this strategy, the quantitative detection of Hg2+ could be achieved. After the optimization of the experiment conditions, the average color intensity (Ic) resulting from RGB values was linear related to the concentration of Hg2+ from 10 to 100 nM, accompanied with a detection limit (LOD) down to 5.4 nM calculated by 3σ/S. The successful application of the designed method has been promoted to detect Hg2+ in some water samples, displaying a great potential in practical application. Furthermore, the use of a smartphone made our proposed method simple and accurate, and thus puts forward a possible way for in situ and real-time monitoring.

Graphical Abstract

A portable smartphone-assisted RGB colorimetric method for Hg2+ detection based on Hg2+-enhanced peroxidase-like activity of AuNPs modified on NH2-UiO-66.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Okpala C, Sardo G, Vitale S, Bono G, Arukwe A. Hazardous properties and toxicological update of mercury: from fish food to human health safety perspective. Crit Rev Food Sci. 2018;58(12):1986–2001.

    Article  CAS  Google Scholar 

  2. Syversen T, Kaur P. The toxicology of mercury and its compounds. J Trace Elem Med Bio. 2012;26(4):215–26.

    Article  CAS  Google Scholar 

  3. Zheng H, Hong JJ, Luo XL, Li S, Wang MX, Yang BY, et al. Combination of sequential cloud point extraction and hydride generation atomic fluorescence spectrometry for preconcentration and determination of inorganic and methyl mercury in water samples. Microchem J. 2019;145:806–12.

    Article  CAS  Google Scholar 

  4. Gao XS, Dai JY, Zhao HY, Zhu J, Luo L, Zhang R, et al. Synthesis of MoS2 nanosheets for mercury speciation analysis by HPLC-UV-HG-AFS. RSC Adv. 2018;8(33):18364–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Liu SP, Zhang PP, Liu HC, Wang W, Lian KQ. Determination of trace mercury in cosmetics by suspension-sampling hydride generation atomic fluorescence spectrometry. Asian J Chem. 2013;25(13):7315–8.

    Article  CAS  Google Scholar 

  6. Xie MY, Hao XT, Jiang X, Liu WT, Liu TT, Zheng H, et al. Ultrasound-assisted dual-cloud point extraction with high-performance liquid chromatography-hydride generation atomic fluorescence spectrometry for mercury speciation analysis in environmental water and soil samples. J Sep Sci. 2021;44(12):2457–64.

    Article  PubMed  CAS  Google Scholar 

  7. Thongsaw A, Sananmuang R, Udnan Y, Ross GM, Chaiyasith WC. Speciation of mercury in water and freshwater fish samples using two-step hollow fiber liquid phase microextraction with electrothermal atomic absorption spectrometry. Spectroc Acta Pt B-Atom Spectr. 2019;152:102–8.

    Article  CAS  Google Scholar 

  8. Mielcarek K, Nowakowski P, Puscion-Jakubik A, Gromkowska-Kepka KJ, Soroczynska J, Markiewicz-Zukowska R, et al. Arsenic, cadmium, lead and mercury content and health risk assessment of consuming freshwater fish with elements of chemometric analysis. Food Chem. 2022;379: 132167.

    Article  PubMed  CAS  Google Scholar 

  9. Lv ZH, Liu JX, Mao XF, Na X, Qian YZ. Portable and miniature mercury analyzer using direct sampling inbuilt-metal ceramic electrothermal vaporization. Anal Chim Acta. 2022;1231: 340444.

    Article  PubMed  CAS  Google Scholar 

  10. Ozdemir S, Kilinc E, Celik KS, Okumus V, Soylak M. Simultaneous preconcentrations of Co2+, Cr6+, Hg2+ and Pb2+ ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES. Food Chem. 2017;215:447–53.

    Article  PubMed  CAS  Google Scholar 

  11. Goudarzi S, Fahimirad B, Rajabi M, Baigenzhenov O, Hosseini-Bandegharaei A. Recruiting chemical grafting method for surface modification of stainless steel to fabricate a selective sorbent for solid phase microextraction of mercury metal ion. Environ Science Pollut R. 2023;30(2):3121–32.

    Article  CAS  Google Scholar 

  12. Cai ZQ, Wang Z. Evaluation of solution anode glow discharge as a vapor generator in ICP-OES procedures: application to highly sensitive determination of Cd and Hg. Anal Chim Acta. 2022;1203: 339724.

    Article  PubMed  CAS  Google Scholar 

  13. Lazovic M, Tomovic V, Vasiljevic I, Kecojevic I, Tomovic M, Martinovic A, et al. Cadmium, lead, mercury and arsenic in fresh vegetables and vegetable products intended for human consumption in the Republic of Serbia, 2015–2017. Food Addit Contam B. 2023;16(2):102–19.

    Article  CAS  Google Scholar 

  14. Zhang XN, Zhu MC, Jiang YJ, Wang X, Guo ZM, Shi JY, et al. Simple electrochemical sensing for mercury ions in dairy product using optimal Cu2+-based metal-organic frameworks as signal reporting. J Hazard Mater. 2020;400: 123222.

    Article  PubMed  CAS  Google Scholar 

  15. Elsebai B, Ghica ME, Abbas MN, Brett CMA. Novel amperometric mercury-selective sensor based on organic chelator ionophore. Molecules. 2023;28(6):2809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Xia YX, Li JT, Zhu GB, Yi YH. Innovative strategy based on novel Ti3C2Tx MXenes nanoribbons/carbon nanotubes hybrids for anodic stripping voltammetry sensing of mercury ion. Sens Actuator B-Chem. 2022;355: 131247.

    Article  CAS  Google Scholar 

  17. Yang MY, Sun CX, Yang LY, Zheng SR, Fu HY. Hierarchical porous loofah-like carbon with sulfhydryl functionality for electrochemical detection of trace mercury in water. Anal Chim Acta. 2023;1276: 341646.

    Article  PubMed  CAS  Google Scholar 

  18. Gao YY, Yi N, Ou ZZ, Li ZY, Ma TT, Jia HD, et al. Thioacetal modified phenanthroimidazole as fluorescence probe for rapid and sensitive detection of Hg2+ in aqueous solution assisted by surfactant. Sens Actuator B-Chem. 2018;267:136–44.

    Article  CAS  Google Scholar 

  19. Li YX, Ren ZJ, Ge YS, Di CX, Zhou J, Wu J, et al. A novel peptide fluorescent probe based on different fluorescence responses for detection of mercury species and hydrogen sulfide. Microchem J. 2023;184: 108160.

    Article  CAS  Google Scholar 

  20. Nehzati S, Dolgova NV, Young CG, James AK, Cotelesage JJH, Sokaras D, et al. Mercury Lα1 high energy resolution fluorescence detected X-ray absorption spectroscopy: a versatile speciation probe for mercury. Inorg Chem. 2022;61(13):5201–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yadav S, Choudhary N, Sonpal V, Paital AR. Engineering excitation-independent turn-on fluorescent probe for mercury: functionalized dendritic silica doped with red-emissive carbon dots towards simultaneous detection and remediation with biosensing application. Chem Eng J. 2023;471: 144715.

    Article  CAS  Google Scholar 

  22. Shih TT, Chen JY, Luo YT, Lin CH, Liu YH, Su YA, et al. Development of a titanium dioxide-assisted preconcentration/on-site vapor-generation chip hyphenated with inductively coupled plasma-mass spectrometry for online determination of mercuric ions in urine samples. Anal Chim Acta. 2019;1063:82–90.

    Article  PubMed  CAS  Google Scholar 

  23. Cai WP, Wang YJ, Feng Y, Liu P, Dong SF, Meng B, et al. Extraction and quantification of nanoparticulate mercury in natural soils. Environ Sci Technol. 2022;56(3):1763–70.

    Article  PubMed  CAS  Google Scholar 

  24. Wang Y, Zhu AL, Fang YY, Fan CJ, Guo YL, Tan ZQ, et al. Dithizone-functionalized C18 online solid-phase extraction-HPLC-ICP-MS for speciation of ultra-trace organic and inorganic mercury in cereals and environmental samples. J Environ Sci. 2022;115:403–10.

    Article  CAS  Google Scholar 

  25. Ding YJ, Wang SS, Li JH, Chen LX. Nanomaterial-based optical sensors for mercury ions. TrAC-Trends Anal Chem. 2016;82:175–90.

    Article  CAS  Google Scholar 

  26. Wu Y, Feng J, Hu G, Zhang E, Yu HH. Colorimetric sensors for chemical and biological sensing applications. Sensors. 2023;23(5):2749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhang ZY, Wang H, Chen ZP, Wang XY, Choo J, Chen LX. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: strategies and applications. Biosens Bioelectron. 2018;114:52–65.

    Article  PubMed  CAS  Google Scholar 

  28. Monisha, Shrivas K, Kant T, Patel S, Devi R, Dahariya NS, et al. Inkjet-printed paper-based colorimetric sensor coupled with smartphone for determination of mercury (Hg2+). J Hazard Mater. 2021;414:125440.

    Article  PubMed  CAS  Google Scholar 

  29. Yuan M, Li C, Wang MX, Cao H, Ye T, Hao LL, et al. Low-cost, portable, on-site fluorescent detection of As(III) by a paper-based microfluidic device based on aptamer and smartphone imaging. Microchim Acta. 2023;190:109.

    Article  CAS  Google Scholar 

  30. Wang SS, Ding YW, Zhang L, Cheng YL, Deng Y, Jiang Q, et al. Combination of colorimetry, inner filter effect-induced fluorometry and smartphone-based digital image analysis: a versatile and reliable strategy for multi-mode visualization of food dyes. J Hazard Mater. 2023;445: 130563.

    Article  PubMed  CAS  Google Scholar 

  31. Wang SS, Wang HL, Yuan ZH, Li MY, Gao HR, Shan LJJ, et al. Colorimetry combined with inner filter effect-based fluorometry: a versatile and robust strategy for multimode visualization of food dyes. ACS Appl Mater Interfaces. 2022;14(51):57251–64.

    Article  PubMed  CAS  Google Scholar 

  32. Wang TT, Lio CK, Huang H, Wang RY, Zhou H, Luo P, et al. A feasible image-based colorimetric assay using a smartphone RGB camera for point-of-care monitoring of diabetes. Talanta. 2020;206: 120211.

    Article  PubMed  CAS  Google Scholar 

  33. Yang CH, Yang YJ, Zhao GZ, Wang H, Dai Y, Huang XW. A low-cost microfluidic-based detection device for rapid identification and quantification of biomarkers-based on a smartphone. Biosensors-Basel. 2023;13:753.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yan LX, Chen ZP, Zhang ZY, Qu CL, Chen LX, Shen DZ. Fluorescent sensing of mercury(II) based on formation of catalytic gold nanoparticles. Analyst. 2013;138(15):4280–3.

    Article  PubMed  CAS  Google Scholar 

  35. Huang YQ, Fu S, Wang YS, Xue JH, Xiao XL, Chen SH, et al. Protamine-gold nanoclusters as peroxidase mimics and the selective enhancement of their activity by mercury ions for highly sensitive colorimetric assay of Hg(II). Anal Bioanal Chem. 2018;410(28):7385–94.

    Article  PubMed  CAS  Google Scholar 

  36. Wang SS, Chen ZP, Choo J, Chen LX. Naked-eye sensitive ELISA-like assay based on gold-enhanced peroxidase-like immunogold activity. Anal Bioanal Chem. 2016;408(4):1015–22.

    Article  PubMed  CAS  Google Scholar 

  37. Li YM, Hu JH, Zhu MZ. Confining atomically precise nanoclusters in metal-organic frameworks for advanced catalysis. Coord Chem Rev. 2023;495: 215364.

    Article  CAS  Google Scholar 

  38. Sutton AL, Melag L, Sadiq MM, Hill MR. Capture, storage, and release of oxygen by Metal-Organic Frameworks (MOFs). Angew Chem Int Ed. 2022;61: e2022083.

    Article  Google Scholar 

  39. Li S, Ma JP, Wu GG, Li JH, Ostovan A, Song ZH, et al. Determination of anionic perfluorinated compounds in water samples using cationic fluorinated metal organic framework membrane coupled with UHPLC-MS/MS. J Hazard Mater. 2022;429: 128333.

    Article  PubMed  CAS  Google Scholar 

  40. Chai HN, Yu K, Zhao YM, Zhang ZY, Wang SS, Huang CA, et al. MOF-On-MOF dual enzyme-mimic nanozyme with enhanced cascade catalysis for colorimetric/chemiluminescent dual-mode aptasensing. Anal Chem. 2023;95(28):10785–94.

    Article  PubMed  CAS  Google Scholar 

  41. Yang J, Yang LT, Ye HL, Zhao FQ, Zeng BZ. Highly dispersed AuPd alloy nanoparticles immobilized on UiO-66-NH2 metal-organic framework for the detection of nitrite. Electrochim Acta. 2016;219:647–54.

    Article  CAS  Google Scholar 

  42. Shi XY, Zhang XD, Bi FK, Zheng ZH, Sheng LJ, Xu JC, et al. Effective toluene adsorption over defective UiO-66-NH2: an experimental and computational exploration. J Mol Liq. 2020;316: 113812.

    Article  CAS  Google Scholar 

  43. Zhai YZ, Li YJ, Huang XK, Hou JY, Li HS, Ai SY. Colorimetric and ratiometric fluorescent dual-mode sensitive detection of Hg2+ based on UiO-66-NH2@Au composite. Spectrochim Acta A. 2022;275: 121187.

    Article  CAS  Google Scholar 

  44. Sarker M, Song JY, Jhung SH. Carboxylic-acid-functionalized UiO-66-NH2: a promising adsorbent for both aqueous- and non-aqueous-phase adsorptions. Chem Eng J. 2018;331:124–31.

    Article  CAS  Google Scholar 

  45. Qi K, Hou RZ, Zaman S, Qiu YB, Xia BY, Duan HW. Construction of metal-organic framework/conductive polymer hybrid for all-solid-state fabric supercapacitor. ACS Appl Mater Interfaces. 2018;10(21):18021–8.

    Article  PubMed  CAS  Google Scholar 

  46. Du JJ, Wang ZK, Fan JL, Peng XJ. Gold nanoparticle-based colorimetric detection of mercury ion via coordination chemistry. Sens Actuator B-Chem. 2015;212:481–6.

    Article  CAS  Google Scholar 

  47. Chen XJ, Zu YB, Xie H, Kemas AM, Gao ZQ. Coordination of mercury(II) to gold nanoparticle associated nitrotriazole towards sensitive colorimetric detection of mercuric ion with a tunable dynamic range. Analyst. 2011;136(8):1690–6.

    Article  PubMed  CAS  Google Scholar 

  48. Li Y, Wu P, Xu H, Zhang ZP, Zhong XH. Highly selective and sensitive visualizable detection of Hg2+ based on anti-aggregation of gold nanoparticles. Talanta. 2011;84(2):508–12.

    Article  PubMed  CAS  Google Scholar 

  49. Kataria R, Sethuraman K, Vashisht D, Vashisht A, Mehta SK, Gupta A. Colorimetric detection of mercury ions based on anti-aggregation of gold nanoparticles using 3, 5-dimethyl-1-thiocarboxamidepyrazole. Microchem J. 2019;148:299–305.

    Article  CAS  Google Scholar 

  50. Ismail M, Khan MI, Akhtar K, Seo J, Khan MA, Asiri AM, et al. Phytosynthesis of silver nanoparticles; naked eye cellulose filter paper dual mechanism sensor for mercury ions and ammonia in aqueous solution. J Mater Sci Mater Electron. 2019;30(8):7367–83.

    Article  CAS  Google Scholar 

  51. Apilux A, Siangproh W, Praphairaksit N, Chailapakul O. Simple and rapid colorimetric detection of Hg(II) by a paper-based device using silver nanoplates. Talanta. 2012;97:388–94.

    Article  PubMed  CAS  Google Scholar 

  52. Chen GH, Chen WY, Yen YC, Wang CW, Chang HT, Chen CF. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal Chem. 2014;86(14):6843–9.

    Article  PubMed  CAS  Google Scholar 

  53. Nandhini C, Kumar PS, Shanmugapriya R, Vennila KN, Elango KP. Selective smartphone aided colorimetric detection of Hg(II) in an aqueous solution via metal ion-induced keto enol tautomerism-spectroscopic and theoretical studies. J Mol Struct. 2021;1246: 131134.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (22006085, 21976099, 22006086, 22376216) and Shandong Provincial Natural Science Foundation (ZR2020QB135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiping Ma or Lingxin Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.51 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, Y., Ma, J. et al. Portable smartphone-assisted highly sensitive detection of mercury ions based on gold nanoparticle-modified NH2-UiO-66 metal–organic framework. Anal Bioanal Chem 416, 1001–1010 (2024). https://doi.org/10.1007/s00216-023-05090-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05090-y

Keywords

Navigation