Skip to main content
Log in

Sub-5-min RP-UHPLC-TIMS for high-throughput untargeted lipidomics and its application to multiple matrices

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Untargeted lipidomics, with its ability to take a snapshot of the lipidome landscape, is an important tool to highlight lipid changes in pathology or drug treatment models. One of the shortcomings of most untargeted lipidomics based on UHPLC-HRMS is the low throughput, which is not compatible with large-scale screening. In this contribution, we evaluate the application of a sub-5-min high-throughput four-dimensional trapped ion mobility mass spectrometry (HT-4D-TIMS) platform for the fast profiling of multiple complex biological matrices. Human AC-16 cells and mouse brain, liver, sclera, and feces were used as samples. By using a fast 4-min RP gradient, the implementation of TIMS allows us to differentiate coeluting isomeric and isobaric lipids, with correct precursor ion isolation, avoiding co-fragmentation and chimeric MS/MS spectra. Globally, the HT-4D-TIMS allowed us to annotate 1910 different lipid species, 1308 at the molecular level and 602 at the sum composition level, covering 58 lipid subclasses, together with quantitation capability covering more than three orders of magnitude. Notably, TIMS values were highly comparable with respect to longer LC gradients (CV% = 0.39%). These results highlight how HT-4D-TIMS-based untargeted lipidomics possess high coverage and accuracy, halving the analysis time with respect to conventional UHPLC methods, and can be used for fast and accurate untargeted analysis of complex matrices to rapidly evaluate changes of lipid metabolism in disease models or drug discovery campaigns.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AHexCer:

Acylhexosylceramide

ASM:

Acylsphingomyelin

BMP:

Bismonoacylglycerophosphate

CL:

Cardiolipin

CAR:

Carnitine

Cer:

Ceramide

CE:

Cholesteryl ester

CoQ:

Coenzyme Q

DG:

Diacylglycerol

DGGA:

Diacylglyceryl glucuronide

DGDG:

Digalactosyldiacylglycerol

Hex2Cer:

Dihexosylceramide

DCAE:

Esterified deoxycholic acid

DG O-:

Ether-linked diacylglycerol

LPC O-:

Ether-linked lysophosphatidylcholine

LPE O-:

Ether-linked lysophosphatidylethanolamine

MGDG O-:

Ether-linked monogalactosyldiacylglycerol

Ox-PE-O-:

Ether-linked oxidized phosphatidylethanolamine

PC O-:

Ether-linked phosphatidylcholine

PE O-:

Ether-linked phosphatidylethanolamine

PG O-:

Ether-linked phosphatidylglycerol

PI O-:

Ether-linked phosphatidylinositol

PS O-:

Ether-linked phosphatidylserine

TG O-:

Ether-linked triacylglycerol

FA:

Fatty acid

FAHFA:

Fatty acid ester of hydroxyl fatty acid

GM3:

Ganglioside GM3

HBMP:

Hemibismonoacylglycerophosphate

HexCer:

Hexosylceramide

LPC:

Lysophophatidylcholine

LPE:

Lysophosphatidylethanolamine

LPG:

Lysophosphatidylglycerol

LPI:

Lysophosphatidylinositol

LPS:

Lysophosphatidylserine

MG:

Monoacylglycerol

MGDG:

Monogalactosyldiacylglycerol

NAGly:

N-Acyl glycine

NAGlySer:

N-Acyl glycyl serine

Ox-PI-Cer:

Oxidized ceramide phosphoinositol

Ox-PE:

Oxidized phosphatidylethanolamine

Ox-PI:

Oxidized phosphatidylinositol

Ox-SM:

Oxidized sphingomyelin

Ox-SHexCer:

Oxidized sulfatide

PC:

Phosphatidylcholine

PEtOH:

Phosphatidylethanol

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PMeOH:

Phosphatidylmethanol

PS:

Phosphatidylserine

SPB:

Sphingoid bases

SM:

Sphingomyelin

ST:

Sterol

SE:

Sterol ester

SHexCer:

Sulfatide

TG:

Triacylglycerol

Hex3Cer:

Trihexosylceramide

Vit. D:

Vitamin D

References

  1. Wenk M. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4:594–610. https://doi.org/10.1038/nrd1776.

    Article  PubMed  CAS  Google Scholar 

  2. Han X, Gross RW. The foundations and development of lipidomics. J Lipid Res. 2022;63(2): 100164. https://doi.org/10.1016/j.jlr.2021.100164.

    Article  PubMed  CAS  Google Scholar 

  3. Züllig T, Trötzmüller M, Köfeler HC. Lipidomics from sample preparation to data analysis: a primer. Anal Bioanal Chem. 2020;412:2191–209. https://doi.org/10.1007/s00216-019-02241-y.

    Article  PubMed  CAS  Google Scholar 

  4. Cajka T, Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Analyt Chem. 2014;61:192–206. https://doi.org/10.1016/j.trac.2014.04.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Xuan Q, Hu C, Yu D, Wang L, Zhou Y, Zhao X, Li Q, Hou X, Xu G. Development of a high coverage pseudotargeted lipidomics method based on ultra-high performance liquid chromatography-mass spectrometry. Anal Chem. 2018;90(12):7608–16. https://doi.org/10.1021/acs.analchem.8b01331.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Xu T, Hu C, Xuan Q, Xu G. Recent advances in analytical strategies for mass spectrometry-based lipidomics. Anal Chim Acta. 2020;1137:156–69. https://doi.org/10.1016/j.aca.2020.09.060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kostidis S, Sánchez-López E, Giera M. Lipidomics analysis in drug discovery and development. Curr Opin Chem Biol. 2023;72: 102256. https://doi.org/10.1016/j.cbpa.2022.102256.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang Y, Xie Y, Lv W, Hu C, Xu T, Liu X, Zhang R, Xu G, Xia Y, Zhao X. A high throughput lipidomics method and its application in atrial fibrillation based on 96-well plate pretreatment and liquid chromatography-mass spectrometry. J Chromatogr A. 2021;1651: 462271. https://doi.org/10.1016/j.chroma.2021.462271.

    Article  PubMed  CAS  Google Scholar 

  9. Jung HR, Sylvänne T, Koistinen KM, Tarasov K, Kauhanen D, Ekroos K. High throughput quantitative molecular lipidomics. Biochim Biophys Acta. 2011;1811(11):925–34. https://doi.org/10.1016/j.bbalip.2011.06.025.

    Article  PubMed  CAS  Google Scholar 

  10. Paglia G, Kliman M, Claude E, Scoot G, Astarita G. Applications of ion-mobility mass spectrometry for lipid analysis. Anal Bioanal Chem. 2015;407:4995–5007. https://doi.org/10.1007/s00216-015-8664-8.

    Article  PubMed  CAS  Google Scholar 

  11. Hinz C, Liggi S, Griffin JL. The potential of ion mobility mass spectrometry for high-throughput and high-resolution lipidomics. Curr Opin Chem Biol. 2018;42:42–50. https://doi.org/10.1016/j.cbpa.2017.10.018.

    Article  PubMed  CAS  Google Scholar 

  12. Vasilopoulou CG, Sulek K, Brunner AD, Meitei N, Schweiger-Hufnagel U, Meyer SW, Barsch A, Mann M, Meier F. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat Commun. 2020;11:331. https://doi.org/10.1038/s41467-019-14044-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Meier F, Park MA, Mann M. Trapped ion mobility spectrometry and parallel accumulation-serial fragmentation in proteomics. Mol Cell Proteomics. 2021;20: 100138. https://doi.org/10.1016/j.mcpro.2021.100138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Merciai F, Musella S, Sommella E, Bertamino A, D’Ursi AM, Campiglia P. Development and application of a fast ultra-high performance liquid chromatography-trapped ion mobility mass spectrometry method for untargeted lipidomics. J Chromatogr A. 2022;1673: 463124. https://doi.org/10.1016/j.chroma.2022.463124.

    Article  PubMed  CAS  Google Scholar 

  15. Skowronek P, Thielert M, Voytik E, Tanzer MC, Hansen FM, Willems S, Karayel O, Brunner AD, Meier F, Mann M. Rapid and in-depth coverage of the (phospho-)proteome with deep libraries and optimal window design for dia-PASEF. Mol Cell Proteomics. 2022;21(9): 100279. https://doi.org/10.1016/j.mcpro.2022.100279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen X, Yin Y, Luo M, Zhou Z, Cai Y, Zhu ZJ. Trapped ion mobility spectrometry-mass spectrometry improves the coverage and accuracy of four-dimensional untargeted lipidomics. Anal Chim Acta. 2022;1210: 339886. https://doi.org/10.1016/j.aca.2022.339886.

    Article  PubMed  CAS  Google Scholar 

  17. Lerner R, Baker D, Schwitter C, Neuhaus S, Hauptmann T, Post JM, Kramer S, Bindila L. Four-dimensional trapped ion mobility spectrometry lipidomics for high throughput clinical profiling of human blood samples. Nat Commun. 2023;14(1):937. https://doi.org/10.1038/s41467-023-36520-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ciccarelli M, Merciai F, Carrizzo A, Sommella E, Di Pietro P, Caponigro V, Salviati E, Musella S, Sarno VD, Rusciano M, Toni AL, Iesu P, Izzo C, Schettino G, Conti V, Venturini E, Vitale C, Scarpati G, Bonadies D, Rispoli A, Polverino B, Poto S, Pagliano P, Piazza O, Licastro D, Vecchione C, Campiglia P. Untargeted lipidomics reveals specific lipid profiles in COVID-19 patients with different severity from Campania region (Italy). J Pharm Biomed Anal. 2022;217: 114827. https://doi.org/10.1016/j.jpba.2022.114827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tumanov S, Kamphorst JJ. Recent advances in expanding the coverage of the lipidome. Curr Opin Biotechnol. 2017;43:127–33. https://doi.org/10.1016/j.copbio.2016.11.008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang F, Guo S, Zhang M, Zhang Z, Guo Y. Characterizing ion mobility and collision cross section of fatty acids using electrospray ion mobility mass spectrometry. J Mass Spectrom. 2015;50(7):906–13. https://doi.org/10.1002/jms.3600.

    Article  PubMed  CAS  Google Scholar 

  21. Xiang H, Zhang B, Wang Y, Xu N, Zhang F, Luo R, Ji M, Ding C. Region-resolved multi-omics of the mouse eye. Cell Rep. 2023;42(2): 112121. https://doi.org/10.1016/j.celrep.2023.112121.

    Article  PubMed  CAS  Google Scholar 

  22. Rust BM, Picklo MJ, Yan L, Mehus AA, Zeng H. Time-restricted feeding modifies the fecal lipidome and the gut microbiota. Nutrients. 2023;15(7):1562. https://doi.org/10.3390/nu15071562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. dkowiak J, Jirásko R, Kolářová D, Bártl J, Hájek T, Antonelli M, Vaňková Z, Wolrab D, Hrstka R, Študentová H, Melichar B, Pešková K, Holčapek M. Robust and high-throughput lipidomic quantitation of human blood samples using flow injection analysis with tandem mass spectrometry for clinical use. Anal Bioanal Chem. 2023;415(5):935-951. https://doi.org/10.1007/s00216-022-04490-w.

  24. Cajka T, Smilowitz JT, Fiehn O. Validating quantitative untargeted lipidomics across nine liquid chromatography-high-resolution mass spectrometry platforms. Anal Chem. 2017;89(22):12360–8. https://doi.org/10.1021/acs.analchem.7b03404.

    Article  PubMed  CAS  Google Scholar 

  25. Koelmel JP, Cochran JA, Ulmer CZ, Levy AJ, Patterson RE, Olsen BC, Yost RA, Bowden JA, Garrett TJ. Software tool for internal standard based normalization of lipids, and effect of data-processing strategies on resulting values. BMC Bioinformatics.2019;20(1): 217. https://doi.org/10.1186/s12859-019-2803-8.

  26. Bartosova Z, Gonzalez SV, Voigt A, Bruheim P. High throughput semiquantitative UHPSFC-MS/MS lipid profiling and lipid class determination. J Chromatogr Sci. 2021;59(7):670–80. https://doi.org/10.1093/chromsci/bmaa121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Drotleff B, Illison J, Schlotterbeck J, Lukowski R, Lämmerhofer M. Comprehensive lipidomics of mouse plasma using class-specific surrogate calibrants and SWATH acquisition for large-scale lipid quantification in untargeted analysis. Anal Chim Acta. 2019;1086:90–102. https://doi.org/10.1016/j.aca.2019.08.030.

    Article  PubMed  CAS  Google Scholar 

  28. Choi J, Yin T, Shinozaki K, Lampe JW, Stevens JF, Becker LB, Kim J. Comprehensive analysis of phospholipids in the brain, heart, kidney, and liver: brain phospholipids are least enriched with polyunsaturated fatty acids. Mol Cell Biochem. 2018;442(1–2):187–201. https://doi.org/10.1007/s11010-017-3203-x.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Cells and tissues were kindly donated as part of secondary experiments from Prof. Carrizzo the Department of Medicine (DIPMED, University of Salerno, Italy) and from Prof. Paolisso of the Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy.

Funding

This work was supported by Ministero dell’Università e della Ricerca (MIUR) project PIR01_00032 BIO OPEN LAB BOL “CUP” J37E19000050007, project CIR01_00032 – BOL “BIO Open Lab—Rafforzamento del capitale umano” and project PNC0000001 D34 Health—Digital Driven Diagnostics, prognostics and therapeutics for sustainable Health care “CUP” B53C22006090001 and Regione Campania (Italy) grant “Combattere la resistenza tumorale: piattaforma integrata multi-disciplinare per un approccio tecnologico innovative alle oncoterapie—CAMPANIA ONCO-TERAPIE” project number B61G18000470007. to P. Campiglia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: FM. Methodology: VC. Formal analysis and investigation: DLG, ES. Data curation: TC. Writing—original draft preparation: MGB. Writing—review and editing: ES, SM. Funding acquisition: PC. Supervision: ES, CC.

Corresponding author

Correspondence to Eduardo Sommella.

Ethics declarations

Ethics approval

The study was conducted in conformity with Italian (D.L. 26/2014) and European (directive 2010/63/EU) regulations on the protection of animals used for scientific purposes and approved by the Italian Ministry.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 1.31 MB)

Supplementary file2 (DOC 2.84 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merciai, F., Basilicata, M.G., La Gioia, D. et al. Sub-5-min RP-UHPLC-TIMS for high-throughput untargeted lipidomics and its application to multiple matrices. Anal Bioanal Chem 416, 959–970 (2024). https://doi.org/10.1007/s00216-023-05084-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05084-w

Keywords

Navigation