Skip to main content
Log in

Single-atom Fe nanozymes with excellent oxidase-like and laccase-like activity for colorimetric detection of ascorbic acid and hydroquinone

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Although traditional Fe-based nanozymes have shown great potential, generally only a small proportion of the Fe atoms on the catalyst’s surface are used. Herein, we synthesized single-atom Fe on N-doped graphene nanosheets (Fe-CNG) with high atom utilization efficiency and a unique coordination structure. Active oxygen species including superoxide radicals (O2•−) and singlet oxygen (1O2) were efficiently generated from the interaction of the Fe-CNG with dissolved oxygen in acidic conditions. The Fe-CNG nanozymes were found to display enhanced oxidase-like and laccase-like activity, with Vmax of 2.07 × 10−7 M∙S−1 and 4.54 × 10−8 M∙S−1 and Km of 0.324 mM and 0.082 mM, respectively, which is mainly due to Fe active centers coordinating with O and N atoms simultaneously. The oxidase-like performance of the Fe-CNG can be effectively inhibited by ascorbic acid (AA) or hydroquinone (HQ), which can directly obstruct the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB). Therefore, a direct and sensitive colorimetric method for the detection of AA and HQ activity was established, which exhibited good linear detection and limit of detection (LOD) of 0.048 μM and 0.025 μM, respectively. Moreover, a colorimetric method based on the Fe-CNG catalyst was fabricated for detecting the concentration of AA in vitamin C. Therefore, this work offers a new method for preparing a single-atom catalyst (SAC) nanozyme and a promising strategy for detecting AA and HQ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liang M, Yan X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190–200. https://doi.org/10.1021/acs.accounts.9b00140.

    Article  PubMed  CAS  Google Scholar 

  2. Lin Y, Ren J, Qu X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res. 2014;47(4):1097–105. https://doi.org/10.1021/ar400250z.

    Article  PubMed  CAS  Google Scholar 

  3. Breslow R. Biomimetic chemistry and artificial enzymes: catalysis by design. Acc Chem Res. 1995;28(3):146–53. https://doi.org/10.1021/ar00051a008.

    Article  CAS  Google Scholar 

  4. Kirby AJ. Enzyme mimics. Angew Chem Int Ed Engl. 1994;33(5):551–3. https://doi.org/10.1002/anie.199405511.

    Article  Google Scholar 

  5. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83. https://doi.org/10.1038/nnano.2007.260.

    Article  PubMed  CAS  Google Scholar 

  6. Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–93. https://doi.org/10.1039/c3cs35486e.

    Article  PubMed  CAS  Google Scholar 

  7. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–76. https://doi.org/10.1039/c8cs00457a.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang J, Zhong Y, Zhang C, Zhang J, Zhuang Z. Mesoporous core-shell Pd@Pt nanospheres as oxidase mimics with superhigh catalytic efficiency at room temperature. J Phys Chem Lett. 2022;13(9):2137–43. https://doi.org/10.1021/acs.jpclett.1c03921.

    Article  PubMed  CAS  Google Scholar 

  9. Fan K, Xi J, Fan L, Wang P, Zhu C, Tang Y, Xu X, Liang M, Jiang B, Yan X, Gao L. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun. 2018;9(1):1440. https://doi.org/10.1038/s41467-018-03903-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Dong W, Huang Y. CeO2/C nanowire derived from a cerium(III) based organic framework as a peroxidase mimic for colorimetric sensing of hydrogen peroxide and for enzymatic sensing of glucose. Mikrochim Acta. 2019;187(1):11. https://doi.org/10.1007/s00604-019-4032-2.

    Article  PubMed  CAS  Google Scholar 

  11. Zhao Z, Shi X, Shen Z, Gu Y, He L, Zhang M, Lu N. Single-atom Fe nanozymes coupling with atomic clusters as superior oxidase mimics for ratiometric fluorescence detection. Chem Eng J. 2023;469:143923. https://doi.org/10.1016/j.cej.2023.143923.

    Article  CAS  Google Scholar 

  12. Guo Z, Xie Y, Xiao J, Zhao ZJ, Wang Y, Xu Z, Zhang Y, Yin L, Cao H, Gong J. Single-atom Mn-N(4) site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution. J Am Chem Soc. 2019;141(30):12005–10. https://doi.org/10.1021/jacs.9b04569.

    Article  PubMed  CAS  Google Scholar 

  13. Shen L, Ye D, Zhao H, Zhang J. Perspectives for single-atom nanozymes: advanced synthesis, functional mechanisms, and biomedical applications. Anal Chem. 2021;93(3):1221–31. https://doi.org/10.1021/acs.analchem.0c04084.

    Article  PubMed  CAS  Google Scholar 

  14. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chem. 2011;3(8):634–41. https://doi.org/10.1038/nchem.1095.

    Article  CAS  Google Scholar 

  15. Liu X, Ding H, Hu B, Tian F, Sun J, Jin L, Yang R. Large-scale synthesis of high loading Co single-atom catalyst with efficient oxidase-like activity for the colorimetric detection of acid phosphatase. Appl Surf Sci. 2022;605:154766. https://doi.org/10.1016/j.apsusc.2022.154766.

    Article  CAS  Google Scholar 

  16. Wu W, Huang L, Zhu X, Chen J, Chao D, Li M, Wu S, Dong S. Reversible inhibition of the oxidase-like activity of Fe single-atom nanozymes for drug detection. Chem Sci. 2022;13(16):4566–72. https://doi.org/10.1039/d2sc00212d.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ge J, Yang L, Li Z, Wan Y, Mao D, Deng R, Zhou Q, Yang Y, Tan W. A colorimetric smartphone-based platform for pesticides detection using Fe-N/C single-atom nanozyme as oxidase mimetics. J Hazard Mater. 2022;436:129199. https://doi.org/10.1016/j.jhazmat.2022.129199.

    Article  PubMed  CAS  Google Scholar 

  18. Jiao L, Xu W, Yan H, Wu Y, Liu C, Du D, Lin Y, Zhu C. Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal Chem. 2019;91(18):11994–9. https://doi.org/10.1021/acs.analchem.9b02901.

    Article  PubMed  CAS  Google Scholar 

  19. Huang L, Chen J, Gan L, Wang J, Dong S. Single-atom nanozymes. Sci Adv. 2019;5:eaav5490. https://doi.org/10.1126/sciadv.aav5490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Li X, Ding S, Lyu Z, Tieu P, Wang M, Feng Z, Pan X, Zhou Y, Niu X, Du D, Zhu W, Lin Y. Single-atomic iron doped carbon dots with both photoluminescence and oxidase-like activity. Small. 2022;18(37):2203001. https://doi.org/10.1002/smll.202203001.

    Article  CAS  Google Scholar 

  21. Li J, Zhou Y, Xiao Y, Cai S, Huang C, Guo S, Sun Y, Song RB, Li Z. Carbon dots as light-responsive oxidase-like nanozyme for colorimetric detection of total antioxidant capacity in fruits. Food Chem. 2022;405:134749. https://doi.org/10.1016/j.foodchem.2022.134749.

    Article  PubMed  CAS  Google Scholar 

  22. Ni P, Liu S, Wang B, Chen C, Jiang Y, Zhang C, Chen J, Lu Y. Light-responsive Au nanoclusters with oxidase-like activity for fluorescent detection of total antioxidant capacity. J Hazard Mater. 2021;411:125106. https://doi.org/10.1016/j.jhazmat.2021.125106.

    Article  PubMed  CAS  Google Scholar 

  23. Ni S, Han F, Wang W, Han D, Bao Y, Han D, Wang H, Niu L. Innovations upon antioxidant capacity evaluation for cosmetics: A photoelectrochemical sensor exploitation based on N-doped graphene/TiO2 nanocomposite. Sensor Actuator B: Chem. 2018;259:963–71. https://doi.org/10.1016/j.snb.2017.12.154.

    Article  CAS  Google Scholar 

  24. Plaza M, Kariuki J, Turner C. Quantification of individual phenolic compounds’ contribution to antioxidant capacity in apple: a novel analytical tool based on liquid chromatography with diode array, electrochemical, and charged aerosol detection. J Agric Food Chem. 2014;62(2):409–18. https://doi.org/10.1021/jf404263k.

  25. Hu Q, Sun H, Zhou X, Gong X, Xiao L, Liu L, Yang ZQ. Bright-yellow-emissive nitrogen-doped carbon nanodots as a fluorescent nanoprobe for the straightforward detection of glutathione in food samples. Food Chem. 2020;325:126946. https://doi.org/10.1016/j.foodchem.2020.126946.

    Article  PubMed  CAS  Google Scholar 

  26. Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: a review. Int J Mol Sci. 2021;22(7):3380. https://doi.org/10.3390/ijms22073380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Liu X, Wu F, Zheng X, Liu H, Ren F, Sun J, Ding H, Yang R, Jin L. Facile synthesis of high-loading Cu single-atom nanozyme for total antioxidant capacity sensing. ACS Appl Nano Mater. 2023;6(12):10303–11. https://doi.org/10.1021/acsanm.3c01212.

    Article  CAS  Google Scholar 

  28. Jaberie H, Momeni S, Nabipour I. Total antioxidant capacity assessment by a development of an antioxidant assay based on green synthesized MnO2 nanosheets. Microchem J. 2020;157:104908. https://doi.org/10.1016/j.microc.2020.104908.

    Article  CAS  Google Scholar 

  29. Pellegrini N, Vitaglione P, Granato D, Fogliano V. Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: merits and limitations. J Sci Food Agric. 2020;100(14):5064–78. https://doi.org/10.1002/jsfa.9550.

    Article  PubMed  CAS  Google Scholar 

  30. Wan W, Zhao Y, Wei S, Triana CA, Li J, Arcifa A, Allen CS, Cao R, Patzke GR. Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nat Commun. 2021;12(1):5589. https://doi.org/10.1038/s41467-021-25811-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Liu D, Wu C, Chen S, Ding S, Xie Y, Wang C, Wang T, Haleem YA, urRehman Z, Sang Y, Liu Q, Zheng X, Wang Y, Ge B, Xu H, Song L. In situ trapped high-density single metal atoms within graphene: iron-containing hybrids as representatives for efficient oxygen reduction. Nano Res. 2018;11(4):2217–28. https://doi.org/10.1007/s12274-017-1840-8.

    Article  CAS  Google Scholar 

  32. Wu JB, Lin ML, Cong X, Liu HN, Tan PH. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev. 2018;47(5):1822–73. https://doi.org/10.1039/c6cs00915h.

    Article  PubMed  CAS  Google Scholar 

  33. Lu J, Wang Z, Guo Y, Jin Z, Cao G, Qiu J, Lian F, Wang A, Wang W. Ultrathin nanosheets of FeOOH with oxygen vacancies as efficient polysulfide electrocatalyst for advanced lithium–sulfur batteries. Energy Storage Mater. 2022;47:561–8. https://doi.org/10.1016/j.ensm.2022.02.008.

    Article  Google Scholar 

  34. Zhao D, Yu K, Song P, Feng W, Hu B, Cheong W-C (Max), Zhuang Z, Liu S, Sun K, Zhang J, Chen C. Atomic-level engineering Fe1N2O2 interfacial structure derived from oxygen-abundant metal-organic frameworks to promote electrochemical CO2 reduction. Energy Environ Sci. 2022;15:3795–840. https://doi.org/10.1039/D2EE00878E.

    Article  CAS  Google Scholar 

  35. Xu Y, Xue J, Zhou Q, Zheng Y, Chen X, Liu S, Shen Y, Zhang Y. The Fe-N-C nanozyme with both accelerated and inhibited biocatalytic activities capable of accessing drug-drug interactions. Angew Chem Int Ed. 2020;59(34):14498–503. https://doi.org/10.1002/anie.202003949.

    Article  CAS  Google Scholar 

  36. Kong A, Kong Y, Zhu X, Han Z, Shan Y. Ordered mesoporous Fe (or Co)–N-graphitic carbons as excellent non-precious-metal electrocatalysts for oxygen reduction. Carbon. 2014;78:49–59. https://doi.org/10.1016/j.carbon.2014.06.047.

    Article  CAS  Google Scholar 

  37. Chen P, Zhou T, Xing L, Xu K, Tong Y, Xie H, Zhang L, Yan W, Chu W, Wu C, Xie Y. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew Chem Int Ed. 2017;56(2):610–4. https://doi.org/10.1002/anie.201610119.

    Article  CAS  Google Scholar 

  38. Zhou J, Duchesne PN, Hu Y, Wang J, Zhang P, Li Y, Regier T, Dai H. Fe-N bonding in a carbon nanotube-graphene complex for oxygen reduction: an XAS study. Phys Chem Chem Phys. 2014;16(30):15787–91. https://doi.org/10.1039/c4cp01455c.

    Article  PubMed  CAS  Google Scholar 

  39. Li YZ, Li TT, Chen W, Song YY. Co(4)N nanowires: noble-metal-free peroxidase mimetic with excellent salt- and temperature-resistant abilities. ACS Appl Mater Interfaces. 2017;9(35):29881–8. https://doi.org/10.1021/acsami.7b09861.

    Article  PubMed  CAS  Google Scholar 

  40. Zhou X, Wang M, Su X. Sensitive glutathione S-transferase assay based on Fe-doped hollow carbon nanospheres with oxidase-like activity. Sensor Actuator B: Chem. 2021;338:129777. https://doi.org/10.1016/j.snb.2021.129777.

    Article  CAS  Google Scholar 

  41. Huang FW, Ma K, Ni XW, Qiao SL, Chen KZ. CuCoFe Layered double hydroxides as laccase mimicking nanozymes for colorimetric detection of pheochromocytoma biomarkers. Chem Commun. 2022;58(12):1982–5. https://doi.org/10.1039/d1cc06612a.

    Article  CAS  Google Scholar 

  42. Wang C, Ren G, Yuan B, Zhang W, Lu M, Liu J, Li K, Lin Y. Enhancing enzyme-like activities of prussian blue analog nanocages by molybdenum doping: toward cytoprotecting and online optical hydrogen sulfide monitoring. Anal Chem. 2020;92(11):7822–30. https://doi.org/10.1021/acs.analchem.0c01028.

    Article  PubMed  CAS  Google Scholar 

  43. Mu J, Wang Y, Zhao M, Zhang L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun. 2012;48(19):2540–2. https://doi.org/10.1039/c2cc17013b.

    Article  CAS  Google Scholar 

  44. Chen C, Zhao D, Jiang Y, Ni P, Zhang C, Wang B, Yang F, Lu Y, Sun J. Logically regulating peroxidase-like activity of gold nanoclusters for sensing phosphate-containing metabolites and alkaline phosphatase activity. Anal Chem. 2019;91(23):15017–24. https://doi.org/10.1021/acs.analchem.9b03629.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang W, Xu X, Zhang C, Yu Z, Zhou Y, Tang Y, Wu P, Guo S. 3D Space-confined pyrolysis of double-network aerogels containing In-Fe cyanogel and polyaniline: a new approach to hierarchically porous carbon with exclusive Fe-Nx active sites for oxygen reduction catalysis. Small Methods. 2017;1(8):1700167. https://doi.org/10.1002/smtd.201700167.

    Article  CAS  Google Scholar 

  46. Zhang H, Hwang S, Wang M, Feng Z, Karakalos S, Luo L, Qiao Z, Xie X, Wang C, Su D, Shao Y, Wu G. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J Am Chem Soc. 2017;139(40):14143–9. https://doi.org/10.1021/jacs.7b06514.

    Article  PubMed  CAS  Google Scholar 

  47. Kumar A, Sun K, Duan X, Tian S, Sun X. Construction of dual-atom Fe via face-to-face assembly of molecular phthalocyanine for superior oxygen reduction reaction. Chem Mater. 2022;34(12):5598–606. https://doi.org/10.1021/acs.chemmater.2c00775.

    Article  CAS  Google Scholar 

  48. Shen H, Peng H, Cao R, Yang L, Gao Y, Turak A, Thomas T, Guo X, Zhu Y, Wang J, Yang M. Oxygen coordination on Fe-N-C to boost oxygen reduction catalysis. J Phys Chem Lett. 2021;12(1):517–24. https://doi.org/10.1021/acs.jpclett.0c02812.

    Article  PubMed  CAS  Google Scholar 

  49. Chen K, Liu K, An P, Li H, Lin Y, Hu J, Jia C, Fu J, Li H, Liu H, Lin Z, Li W, Li J, Lu YR, Chan TS, Zhang N, Liu M. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat Commun. 2020;11(1):4173. https://doi.org/10.1038/s41467-020-18062-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Erogul S, Bas SZ, Ozmen M, Yildiz S. A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone. Electrochim Acta. 2015;186:302–13. https://doi.org/10.1016/j.electacta.2015.10.174.

    Article  CAS  Google Scholar 

  51. Song Y, Zhao M, Li H, Wang X, Cheng Y, Ding L, Fan S, Chen S. Facile preparation of urchin-like NiCo2O4 microspheres as oxidase mimetic for colormetric assay of hydroquinone. Sensor Actuator B: Chem. 2018;255:1927–36. https://doi.org/10.1016/j.snb.2017.08.204.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22172063), the Young Taishan Scholar Program (tsqn201812080), the Natural Science Foundation of Shandong Province (ZR2019YQ10), and the Independent Cultivation Program of Innovation Team of Ji’nan City (2021GXRC052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhong Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Nanozymes with guest editors Vipul Bansal, Sudipta Seal, and Hui Wei.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3514 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, S., Xia, M., Xu, P. et al. Single-atom Fe nanozymes with excellent oxidase-like and laccase-like activity for colorimetric detection of ascorbic acid and hydroquinone. Anal Bioanal Chem (2023). https://doi.org/10.1007/s00216-023-05077-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-023-05077-9

Keywords

Navigation