Skip to main content
Log in

Evaluation of the effect of nanoparticles on the cultivation of edible plants by ICP-MS: a review

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanoparticle (NP) applications aiming to boost plant biomass production and enhance the nutritional quality of crops hae proven to be a valuable ally in enhancing agricultural output. They contribute to greater food accessibility for a growing and vulnerable population. These nanoscale particles are commonly used in agriculture as fertilizers, pesticides, plant growth promoters, seed treatments, opportune plant disease detection, monitoring soil and water quality, identification and detection of toxic agrochemicals, and soil and water remediation. In addition to the countless NP applications in food and agriculture, it is possible to highlight many others, such as medicine and electronics. However, it is crucial to emphasize the imperative need for thorough NP characterization beyond these applications. Therefore, analytical methods are proposed to determine NPs’ physicochemical properties, such as composition, crystal structure, size, shape, surface charge, morphology, and specific surface area, detaching the inductively coupled plasma mass spectrometry (ICP-MS) that allows the reliable elemental composition quantification mainly in metallic NPs. As a result, this review highlights studies involving NPs in agriculture and their consequential effects on plants, with a specific focus on analyses conducted through ICP-MS. Given the numerous applications of NPs in this field, it is essential to address their presence and increase in the environment and humans since biomagnification and biotransformation effects are studies that should be further developed. In light of this, the demand for rapid, innovative, and sensitive analytical methods for the characterization of NPs remains paramount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ndaba B, Roopnarain A, Rama H, Maaza M. Biosynthesized metallic nanoparticles as fertilizers: an emerging precision agriculture strategy. J Integr Agric. 2022;21(5):1225–42. https://doi.org/10.1016/S2095-3119(21)63751-6.

    Article  CAS  Google Scholar 

  2. Balogh LP. Why do we have so many definitions for nanoscience and nanotechnology? Nanomed Nanotechnol Biol Med. 2010;6:397–8. https://doi.org/10.1016/j.nano.2010.04.001.

    Article  CAS  Google Scholar 

  3. Tortella G, Rubilar O, Pieretti JC, Fincheira P, Santana BM, Fernández-Baldo MA, Benavides-Mendoza A, Seabra AM. Nanoparticles as a promising strategy to mitigate biotic stress in agriculture. Antibiotics. 2023;12(338):1–20. https://doi.org/10.3390/antibiotics12020338.

    Article  CAS  Google Scholar 

  4. Vélez YSP, Carrillo-González R, González-Chávez MCA. Interaction of metal nanoparticles–plants–microorganisms in agriculture and soil remediation. J Nanopart Res. 2021;23(206):2–48. https://doi.org/10.1007/s11051-021-05269-3.

    Article  CAS  Google Scholar 

  5. Selmani A, Kovačević D, Bohinc K. Nanoparticles: from synthesis to applications and beyond. Adv Colloid Interface Sci. 2022;303:102640. https://doi.org/10.1016/j.cis.2022.102640.

    Article  CAS  PubMed  Google Scholar 

  6. Arora S, Murmu G, Mukherjee K, Saha S, Maity D. A comprehensive overview of nanotechnology in sustainable agriculture. J Biotechnol. 2022;355(20):21–41. https://doi.org/10.1016/j.jbiotec.2022.06.007.

    Article  CAS  PubMed  Google Scholar 

  7. Thunugunta T, Reddy AC, Reddy L. Green synthesis of nanoparticles: current prospectus. Nanotechnol Rev. 2015;4(4):303–23. https://doi.org/10.1515/ntrev-2015-0023.

    Article  CAS  Google Scholar 

  8. Bustos M, Encinar R, Sanz-Medel A. Mass spectrometry for the characterisation of nanoparticles. Anal Bioanal Chem. 2013;405:5637–43. https://doi.org/10.1007/s00216-013-7014-y.

    Article  CAS  Google Scholar 

  9. Pestovsky YS, Martínez-Antonio A. The use of nanoparticles and nanoformulations in agriculture. J Nanosci Nanotechnol. 2017;17:8699–730. https://doi.org/10.1166/jnn.2017.15041.

    Article  CAS  Google Scholar 

  10. How to feed the world 2050, Global Agriculture towards 2050. https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf. Accessed 24 Out 2023.

  11. Jiang Y, Zhou P, Zhang P, Adeel M, Shakoor N, Li Y, Li M, Guo M, Zhao W, Lou B, Wang L, Lynch I, Rui Y. Green synthesis of metal-based nanoparticles for sustainable agriculture. Environ Pollut. 2022;309:119755. https://doi.org/10.1016/j.envpol.2022.119755.

    Article  CAS  PubMed  Google Scholar 

  12. Cai L, Cai L, Jia H, Liu C, Wang C, Sun X. Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. J Hazard Mater. 2020;5(393):122415. https://doi.org/10.1016/j.jhazmat.2020.122415.

    Article  CAS  Google Scholar 

  13. Wu H, Li Z. Nano-enabled agriculture: how do nanoparticles cross barriers in plants? Plant Commun. 2022;3:100346. https://doi.org/10.1016/j.xplc.2022.100346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bolea E, Jimenez MS, Perez-Arantegui J, Vidal JC, Bakir M, Ben-Jeddou K, Gimenez-Ingalaturre AC, Ojeda D, Trujillo C, Laborda F. Analytical applications of single particle inductively coupled plasma mass spectrometry: a comprehensive and critical review. Anal Meth. 2021;13:2742–95. https://doi.org/10.1039/d1ay00761k.

    Article  CAS  Google Scholar 

  15. Galb G, Kéri A, Kohut A, Veres M, Geretovszky Z. Nanoparticles in analytical laser and plasma spectroscopy – a review of recent developments in methodology and applications. J Anal At Spectrom. 2021;36:1826. https://doi.org/10.1039/d1ja00149c.

    Article  CAS  Google Scholar 

  16. Degueldre C, Favarger PY. Colloid analysis by single particle inductively coupled plasmamass spectroscopy: a feasibility study. Colloids Surf A: Physicochem Eng Aspects. 2003;217:137–42. https://doi.org/10.1016/S0927-7757(02)00568-X.

    Article  CAS  Google Scholar 

  17. Mondal A, Basu R, Das S, Nandy P. Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res. 2011;13:4519–28. https://doi.org/10.1007/s11051-011-0406-z.

    Article  CAS  Google Scholar 

  18. Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environm Sc Tech. 2012;46(14):7637–43. https://doi.org/10.1021/es300955b.

    Article  CAS  Google Scholar 

  19. Wan Y, Li J, Ren H, Huang J, Yuan H. Physiological investigation of gold nanorods toward watermelon. J Nanosc Nanotech. 2014;14(8):6089–94. https://doi.org/10.1166/jnn.2014.8853.

    Article  CAS  Google Scholar 

  20. Ren HX, Liu L, Liu C, He SY, Huang J, Jun-Li L, Li JL, Zhang Y, Xing-Jiu H, Gu N. Physiological investigation of magnetic iron oxide nanoparticles towards Chinese mung bean. J Biomed Nanotech. 2011;7(5):677–84. https://doi.org/10.1166/jbn.2011.1338.

    Article  CAS  Google Scholar 

  21. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol. 2013;47(2):1082–90. https://doi.org/10.1021/es302973y.

    Article  CAS  PubMed  Google Scholar 

  22. Zoroddu MA, Medici S, Ledda A, Nurchi VM, Lachowicz JI, Peana M. Toxicity of nanoparticles. Curr Med Chem. 2014;21(33):3837–53. https://doi.org/10.2174/0929867321666140601162314.

    Article  CAS  PubMed  Google Scholar 

  23. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem. 2010;59(8):3485–98. https://doi.org/10.1021/jf104517j.

    Article  CAS  Google Scholar 

  24. Lead JR, Batley GE, Alvarez PJJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review. Environ Toxicol Chem. 2018;37(8):2029–63. https://doi.org/10.1002/etc.4147.

    Article  CAS  PubMed  Google Scholar 

  25. Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, Parada J, Seabra AB. Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater. 2020. https://doi.org/10.1016/j.jhazmat.2019.121974.

    Article  PubMed  Google Scholar 

  26. Malejko J, Godlewska-Żyłkiewicz B, Vanek T, Landa P, Nath J, Dror I, Berkowitz B. Uptake, translocation, weathering and speciation of gold nanoparticles in potato, radish, carrot and lettuce crops. J Hazard Mater. 2021. https://doi.org/10.1016/j.jhazmat.2021.126219.

    Article  PubMed  Google Scholar 

  27. Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL. Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol. 2013. https://doi.org/10.1021/es403368j.

    Article  PubMed  Google Scholar 

  28. Trujillo-Reyes J, Vilchis-Nestor AR, Majumdar S, Peralta-Videa JR, Gardea-Torresdey JL. Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings. J Hazard Mater. 2013. https://doi.org/10.1016/j.jhazmat.2013.10.030.

    Article  PubMed  Google Scholar 

  29. Chen G, Ma C, Mukherjee A, Musante C, Zhang J, White JC, Dhankher OP, Xing B. Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin: a physiological and molecular response. Nanotoxicology. 2023. https://doi.org/10.1080/17435390.2016.1202349.

    Article  Google Scholar 

  30. Ko JA, Furuta N, Lim HB. New approach for mapping and physiological test of silica nanoparticles accumulated in sweet basil (Ocimum basilicum) by LA-ICP-MS. Anal Chim Acta. 2019. https://doi.org/10.1016/j.aca.2019.04.033.

    Article  PubMed  Google Scholar 

  31. Salehi H, Chehregani A, Lucini L, Majd A, Gholami M. Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. Sci Total Environ. 2018. https://doi.org/10.1016/j.scitotenv.2017.10.159.

    Article  PubMed  Google Scholar 

  32. Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P. Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci. 2016. https://doi.org/10.3389/fpls.2016.01288.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moreno-Martín G, Sanz-Landaluze J, León-González ME, Madrid Y. Insights into the accumulation and transformation of Ch-SeNPs by Raphanus sativus and Brassica juncea: Effect on essential elements uptake. Sci Total Environ. 2020. https://doi.org/10.1016/j.scitotenv.2020.138453.

    Article  PubMed  Google Scholar 

  34. Wei WJ, Li L, Gao YP, Wang Q, Zhou YY, Liu X, Yang Y. Enzyme digestion combined with SP-ICP-MS analysis to characterize the bioaccumulation of gold nanoparticles by mustard and lettuce plants. Sci Total Environ. 2021. https://doi.org/10.1016/j.scitotenv.2021.146038.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kowalska J, Biaduń E, Kińska K, Gniadek M, Krasnodębska-Ostręga B. Tracking changes in rhodium nanoparticles in the environment, including their mobility and bioavailability in soil. Sci Total Environ. 2022. https://doi.org/10.1016/j.scitotenv.2021.151272.

    Article  PubMed  Google Scholar 

  36. Jiménez-Lamana J, Wojcieszek J, Jakubiak M, Asztemborska M, Szpunar J. Single particle ICP-MS characterization of platinum nanoparticles uptake and bioaccumulation by: Lepidium sativum and Sinapis alba plants. J Anal At Spectrom. 2016. https://doi.org/10.1039/c6ja00201c.

    Article  Google Scholar 

  37. Kińska K, Jiménez-Lamana J, Kowalska J, Krasnodębska-Ostręga B, Szpunar J. Study of the uptake and bioaccumulation of palladium nanoparticles by Sinapis alba using single particle ICP-MS. Sci Total Environ. 2018. https://doi.org/10.1016/j.scitotenv.2017.09.203.

    Article  PubMed  Google Scholar 

  38. Harifan H, Moore J, Ma X. Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Ecotoxicol Environ Saf. 2020. https://doi.org/10.1016/j.ecoenv.2020.110177.

    Article  Google Scholar 

  39. Bhaduri B, Nath J. Tracing of Ag-and CeO2 based engineered nanoparticles in cucumber plant system. J Env Chem Eng. 2021. https://doi.org/10.1016/j.jece.2021.105778.

    Article  Google Scholar 

  40. Wang Y, Wei X, Liu JH, Wei YJ, Zhang X, Bai JJ, Wu CX, Sun XY, Shi W, Chen ML, Wang JH. Imaging of Ce in cucumber leaves by cryogenic laser ablation inductively coupled plasma mass spectrometry. Atomic Spectrosc. 2022. https://doi.org/10.46770/AS.2022.234.

    Article  Google Scholar 

  41. Gao X, Kundu A, Bueno V, Rahim AA, Ghoshal S. Uptake and translocation of mesoporous SiO2-coated ZnO nanoparticles to Solanum lycopersicum following foliar application. Environ Sci Technol. 2021. https://doi.org/10.1021/acs.est.1c00447.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhao L, Huang Y, Zhou H, Adeleye AS, Wang H, Ortiz C, Mazer SJ, Keller AA. GC-TOF-MS based metabolomics and ICP-MS based metallomics of cucumber (Cucumis sativus) fruits reveal alteration of metabolites profile and biological pathway disruption induced by nano copper. Environ Sci Nano. 2016. https://doi.org/10.1039/c6en00093b.

    Article  Google Scholar 

  43. Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL. Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: A Life Cycle Study. J Agric Food Chem. 2013. https://doi.org/10.1021/jf404328e.

    Article  PubMed  Google Scholar 

  44. Dan Y, Ma X, Zhang W, Liu K, Stephan C, Shi H. Single particle ICP-MS method development for the determination of plant uptake and accumulation of CeO2 nanoparticles. Anal Bioanal Chem. 2016. https://doi.org/10.1007/s00216-016-9565-1.

    Article  PubMed  Google Scholar 

  45. Kranjc E, Mazej D, Regvar M, Drobne D, Remškar M. Foliar surface free energy affects platinum nanoparticle adhesion, uptake, and translocation from leaves to roots in arugula and escarole. Environ Sci Nano. 2018. https://doi.org/10.1039/c7en00887b.

    Article  Google Scholar 

  46. Zhu ZJ, Wang H, Yan B, Zheng H, Jiang Y, Miranda OR, Rotello VM, Xing B, Vachet RW. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol. 2012. https://doi.org/10.1021/es301977w.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tanaka YK, Takada S, Kumagai K, Kobayashi K, Hokura A, Ogra Y. Elucidation of tellurium biogenic nanoparticles in garlic, Allium sativum, by inductively coupled plasma-mass spectrometry. J Trace Elem Med Biol. 2020. https://doi.org/10.1016/j.jtemb.2020.126628.

    Article  PubMed  Google Scholar 

  48. Wojcieszek J, Jiménez-Lamana J, Bierla K, Asztemborska M, Ruzik L, Jarosz M, Szpunar J. Elucidation of the fate of zinc in model plants using single particle ICP-MS and ESI tandem MS. J Anal At Spectrom. 2019. https://doi.org/10.1039/c8ja00390d.

    Article  Google Scholar 

  49. Wu J, Zhai Y, Liu G, Bosker T, Vijver MG, Peijnenburg WJGM. Dissolution dynamics and accumulation of Ag nanoparticles in a microcosm consisting of a soil-lettuce-rhizosphere bacterial community. ACS Sustain Chem Eng. 2021. https://doi.org/10.1021/acssuschemeng.1c04987.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sharifan H, Ma X, Moore JMC, Habib MR, Evans C. Zinc oxide nanoparticles alleviated the bioavailability of cadmium and lead and changed the uptake of iron in hydroponically grown lettuce (Lactuca sativa L. var. Longifolia). ACS Sustain Chem Eng. 2019. https://doi.org/10.1021/acssuschemeng.9b03531.

    Article  Google Scholar 

  51. Laughton S, Laycock A, Bland G, von der Kammer F, Hofmann T, Casman EA, Lowry GV. Methanol-based extraction protocol for insoluble and moderately water-soluble nanoparticles in plants to enable characterization by single particle ICP-MS. Anal Bioanal Chem. 2021. https://doi.org/10.1007/s00216-020-03014-8.

    Article  PubMed  Google Scholar 

  52. Ahmed B, Rizvi A, Syed A, Rajput VD, Elgorban AM, Al-Rejaie SS, Minkina T, Khan MS, Lee J. Understanding the phytotoxic impact of Al3+, nano-size, and bulk Al2O3 on growth and physiology of maize (Zea mays L.) in aqueous and soil media. Chemosphere. 2022. https://doi.org/10.1016/j.chemosphere.2022.134555.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang Y, Chen S, Deng C, Shi X, Cota-Ruiz K, White JC, Zhao L, Gardea-Torresdey JL. Metabolomic analysis reveals dose-dependent alteration of maize (Zea mays L.) metabolites and mineral nutrient profiles upon exposure to zerovalent iron nanoparticles. NanoImpact. 2021. https://doi.org/10.1016/j.impact.2021.100336.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ayub MA, Zia urRehman M, Ahmad HR, Fox JP, Clubb P, Wright AL, Anwar-ul-Haq M, Nadeem M, Rico CM, Rossi L. Influence of ionic cerium and cerium oxide nanoparticles on Zea mays seedlings grown with and without cadmium. Environ Pollut. 2023. https://doi.org/10.1016/j.envpol.2023.121137.

    Article  PubMed  Google Scholar 

  55. Ahmed B, Rizvi A, Syed A, Elgorban AM, Khan MS, AL-Shwaiman HA, Musarrat J, Lee J. Differential responses of maize (Zea mays) at the physiological, biomolecular, and nutrient levels when cultivated in the presence of nano or bulk ZnO or CuO or Zn2+ or Cu2+ ions. J Hazard Mater. 2021. https://doi.org/10.1016/j.jhazmat.2021.126493.

    Article  PubMed  Google Scholar 

  56. Raliya R, Tarafdar JC, Biswas P. Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J Agric Food Chem. 2016. https://doi.org/10.1021/acs.jafc.5b05224.

    Article  PubMed  Google Scholar 

  57. Rani N, Kumari K, Sangwan P, Barala P, Yadav J, Vijeta R, Hooda V. Nano-iron and nano-zinc induced growth and metabolic changes in Vigna radiata Sustain. 2022. https://doi.org/10.3390/su14148251.

    Article  Google Scholar 

  58. Gui X, Rui M, Song Y, Yuhui M, Rui Y, Zhang P, He X, Li Y, Zhang Z, Liu L. Phytotoxicity of CeO2 nanoparticles on radish plant (Raphanus sativus). Environ Sci Pollut Res. 2017. https://doi.org/10.1007/s11356-017-8880-1.

    Article  Google Scholar 

  59. Zhang W, Dan Y, Shi H, Ma X. Elucidating the mechanisms for plant uptake and in-planta speciation of cerium in radish (Raphanus sativus L.) treated with cerium oxide nanoparticles. J Environ Chem Eng. 2017. https://doi.org/10.1016/j.jece.2016.12.036.

    Article  Google Scholar 

  60. Wojcieszek J, Jiménez-Lamana J, Ruzik L, Asztemborska M, Jarosz M, Szpunar J. Characterization of TiO2 NPs in Radish (Raphanus sativus L.) by single-particle ICP-QQQ-MS. Front Environ Sci. 2020. https://doi.org/10.3389/fenvs.2020.00100.

    Article  Google Scholar 

  61. Tombuloglu H, Slimani Y, AlShammari TM, Bargouti M, Ozdemir M, Tombuloglu G, Akhtar S, Sabit H, Hakeem KR, Almessiere M, Ercan I, Baykal A. Uptake, translocation, and physiological effects of hematite (α-Fe2O3) nanoparticles in barley (Hordeum vulgare L.). Environ Pollut. 2020. https://doi.org/10.1016/j.envpol.2020.115391.

    Article  PubMed  Google Scholar 

  62. Akdemir H. Evaluation of transcription factor and aquaporin gene expressions in response to Al2O3 and ZnO nanoparticles during barley germination. Plant Physiol Biochem. 2021. https://doi.org/10.1016/j.plaphy.2021.06.018.

    Article  PubMed  Google Scholar 

  63. Marchiol L, Mattiello A, Pošćić F, Fellet G, Zavalloni C, Carlino E, Musetti R. Changes in physiological and agronomical parameters of barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanoparticles. Int J Environ Res Public Health. 2016. https://doi.org/10.3390/ijerph13030332.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Foltête AS, Masfaraud JF, Bigorgne E, Nahmani J, Chaurand P, Botta C, Labille J, Rose J, Férard JF, Cotelle S. Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO 2 nanocomposites on Vicia faba. Environ Pollut. 2021. https://doi.org/10.1016/j.envpol.2011.06.020.

    Article  Google Scholar 

  65. Liu Y, Körnig C, Qi B, Schmutzler O, Staufer T, Sanchez-Cano C, Magel E, White JC, Feliu N, Grüner F, Parak WJ. Size- and ligand-dependent transport of nanoparticles in Matricaria chamomilla as demonstrated by mass spectroscopy and x-ray fluorescence imaging. ACS Nano. 2022. https://doi.org/10.1021/acsnano.2c05339.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang C, Yue L, Cheng B, Chen F, Zhao X, Wang Z, Xing B. Mechanisms of growth-promotion and Se-enrichment in: Brassica chinensis L. by selenium nanomaterials: Beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environ Sci Nano. 2022. https://doi.org/10.1039/d1en00740h.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hawthorne J, De La Torre Roche R, Xing B, Newman LA, Ma X, Majumdar S, Gardea-Torresdey J, White JC. Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain. Environ Sci Technol. 2014. https://doi.org/10.1021/es503792f.

    Article  PubMed  Google Scholar 

  68. Peshkova A, Zinicovscaia I, Cepoi L, Rudi L, Chiriac T, Yushin N, Sohatsky A. Features of copper and gold nanoparticle translocation in Petroselinum crispum segments. Nanomaterials. 2023. https://doi.org/10.3390/nano13111754.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wojcieszek J, Jiménez-Lamana J, Bierła K, Ruzik L, Asztemborska M, Jarosz M, Szpunar J. Uptake, translocation, size characterization and localization of cerium oxide nanoparticles in radish (Raphanus sativus L.). Sci Total Environ. 2019. https://doi.org/10.1016/j.scitotenv.2019.05.265.

    Article  PubMed  Google Scholar 

  70. Tighe-Neira R, Reyes-Díaz M, Nunes-Nesi A, Recio G, Carmona E, Corgne A, Rengel Z, Inostroza-Blancheteau C. Titanium dioxide nanoparticles provoke transient increase in photosynthetic performance and differential response in antioxidant system in Raphanus sativus L. Sci Hortic (Amsterdam). 2020. https://doi.org/10.1016/j.scienta.2020.109418.

    Article  Google Scholar 

  71. Hayder M, Wojcieszek J, Asztemborska M, Zhou Y, Ruzik L. Analysis of cerium oxide and copper oxide nanoparticles bioaccessibility from radish using SP-ICP-MS. J Sci Food Agric. 2020. https://doi.org/10.1002/jsfa.10558.

    Article  PubMed  Google Scholar 

  72. Palomo-Siguero M, López-Heras MI, Cámara C, Madrid Y. Accumulation and biotransformation of chitosan-modified selenium nanoparticles in exposed radish (Raphanus sativus). J Anal At Spectrom. 2015. https://doi.org/10.1039/c4ja00407h.

    Article  Google Scholar 

  73. Wang X, Sun W, Zhang S, Sharifan H, Ma X. Elucidating the effects of cerium oxide nanoparticles and zinc oxide nanoparticles on arsenic uptake and speciation in rice (Oryza sativa) in a Hydroponic System. Environ Sci Technol. 2018. https://doi.org/10.1021/acs.est.8b01664.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gui X, Deng Y, Rui Y, Gao B, Luo W, Chen S, Van Nhan L, Li X, Liu S, Han Y, Liu L, Xing B. Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3). Environ Sci Pollut Res. 2015. https://doi.org/10.1007/s11356-015-4976-7.

    Article  Google Scholar 

  75. Koelmel J, Leland T, Wang H, Amarasiriwardena D, Xing B. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut. 2013. https://doi.org/10.1016/j.envpol.2012.11.026.

    Article  PubMed  Google Scholar 

  76. Zhou Y, Liu X, Yang X, Du Laing G, Yang Y, Tack FMG, Bank MS, Bundschuh J. Effects of platinum nanoparticles on rice seedlings (Oryza sativa L.): size-dependent accumulation, transformation, and ionomic influence. Environ Sci Technol. 2023. https://doi.org/10.1021/acs.est.2c07734.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Li CC, Dang F, Li M, Zhu M, Zhong H, Hintelmann H, Zhou DM. Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology. 2017. https://doi.org/10.1080/17435390.2017.1344740.

    Article  PubMed  Google Scholar 

  78. Galazzi RM, Arruda MAZ. Evaluation of changes in the macro and micronutrients homeostasis of transgenic and non-transgenic soybean plants after cultivation with silver nanoparticles through ionomic approaches. J Trace Elem Med Biol. 2018. https://doi.org/10.1016/j.jtemb.2018.04.004.

    Article  PubMed  Google Scholar 

  79. Rodrigues ES, Montanha GS, de Almeida E, Fantucci H, Santos RM, de Carvalho HWP. Effect of nano cerium oxide on soybean (Glycine max L. Merrill) crop exposed to environmentally relevant concentrations. Chemosphere. 2021. https://doi.org/10.1016/j.chemosphere.2020.128492.

    Article  PubMed  Google Scholar 

  80. Chacón-Madrid K, da Silva FD, Arruda MAZ. The role of silver nanoparticles effects in the homeostasis of metals in soybean cultivation through qualitative and quantitative laser ablation bioimaging. J Trace Elem Med Biol. 2023. https://doi.org/10.1016/j.jtemb.2023.127207.

    Article  PubMed  Google Scholar 

  81. da Silva ABS, Arruda MAZ. Exploring single-particle ICP-MS as an important tool for the characterization and quantification of silver nanoparticles in a soybean cell culture. Spectrochim Acta Part B At Spectrosc. 2023. https://doi.org/10.1016/j.sab.2023.106663.

    Article  Google Scholar 

  82. Cervantes-Avilés P, Huang X, Keller AA. Dissolution and aggregation of metal oxide nanoparticles in root exudates and soil leachate: implications for nanoagrochemical application. Environ Sci Technol. 2021. https://doi.org/10.1021/acs.est.1c00767.

    Article  PubMed  Google Scholar 

  83. Chacón-Madrid K, Zezzi Arruda MA. Internal standard evaluation for bioimaging soybean leaves through laser ablation inductively coupled plasma mass spectrometry: a plant nanotechnology approach. J Anal At Spectrom. 2018. https://doi.org/10.1039/c8ja00254a.

    Article  Google Scholar 

  84. Chavez Soria NG, Bisson MA, Atilla-Gokcumen GE, Aga DS. High-resolution mass spectrometry-based metabolomics reveal the disruption of jasmonic pathway in Arabidopsis thaliana upon copper oxide nanoparticle exposure. Sci Total Environ. 2019. https://doi.org/10.1016/j.scitotenv.2019.07.249.

    Article  PubMed  Google Scholar 

  85. Nath J, Dror I, Landa P, Vanek T, Kaplan-Ashiri I, Berkowitz B. Synthesis and characterization of isotopically-labeled silver, copper and zinc oxide nanoparticles for tracing studies in plants. Environ Pollut. 2018. https://doi.org/10.1016/j.envpol.2018.07.084.

    Article  PubMed  Google Scholar 

  86. Zhang CL, Jiang HS, Gu SP, Zhou XH, Lu ZW, Kang XH, Yin L, Huang J. Combination analysis of the physiology and transcriptome provides insights into the mechanism of silver nanoparticles phytotoxicity. Environ Pollut. 2019. https://doi.org/10.1016/j.envpol.2019.06.032.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pagano L, Servin AD, De La Torre-Roche R, Mukherjee A, Majumdar S, Hawthorne J, Marmiroli M, Maestri E, Marra RE, Isch SM, Dhankher OP, White JC, Marmiroli N. Molecular response of crop plants to engineered nanomaterials. Environ Sci Technol. 2016. https://doi.org/10.1021/acs.est.6b01816.

    Article  PubMed  Google Scholar 

  88. Wang Y, Feng LJ, Sun XD, Zhang M, Duan JL, Yuan XZ. Incorporation of selenium derived from nanoparticles into plant proteins in vivo. ACS nano. 2023. https://doi.org/10.1021/acsnano.3c03739.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chavez Soria NG, Montes A, Bisson MA, Atilla-Gokcumen GE, Aga DS. Mass spectrometry-based metabolomics to assess uptake of silver nanoparticles by: Arabidopsis thaliana. Environ Sci Nano. 2017. https://doi.org/10.1039/c7en00555e.

    Article  Google Scholar 

  90. Wojcieszek J, Chay S, Jiménez-Lamana J, Curie C, Mari S. Study of the stability, uptake and transformations of zero valent iron nanoparticles in a model plant by means of an optimised single particle ICP-MS/MS method. Nanomaterials. 2023. https://doi.org/10.3390/nano13111736.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ma C, Borgatta J, De La Torre-Roche R, Zuverza-Mena N, White JC, Hamers RJ, Elmer WH. Time-dependent transcriptional response of tomato (Solanum lycopersicum L.) to Cu nanoparticle exposure upon infection with fusarium oxysporum f. sp. lycopersici. ACS Sustain Chem Eng. 2019. https://doi.org/10.1021/acssuschemeng.9b01433.

    Article  Google Scholar 

  92. Tighe-Neira R, Reyes-Díaz M, Nunes-Nesi A, Recio G, Carmona ER, Marcos R, Corgne A, Rengel Z, Inostroza-Blancheteau C. Titanium dioxide nanoparticles increase tissue Ti concentration and activate antioxidants in Solanum lycopersicum L. J Soil Sci Plant Nutr. 2021. https://doi.org/10.1007/s42729-021-00487-z.

    Article  Google Scholar 

  93. Bueno V, Gao X, Abdul Rahim A, Wang P, Bayen S, Ghoshal S. Uptake and translocation of a silica nanocarrier and an encapsulated organic pesticide following foliar application in tomato plants. Environ Sci Technol. 2021. https://doi.org/10.1021/acs.est.1c08185.

    Article  PubMed  Google Scholar 

  94. Dan Y, Zhang W, Xue R, Ma X, Stephan C, Shi H. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis. Environ Sci Technol. 2015. https://doi.org/10.1021/es506179e.

    Article  PubMed  Google Scholar 

  95. Judy JD, Kirby JK, McLaughlin MJ, Cavagnaro T, Bertsch PM. Gold nanomaterial uptake from soil is not increased by arbuscular mycorrhizal colonization of solanum lycopersicum (Tomato). Nanomaterials. 2016. https://doi.org/10.3390/nano6040068.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hu T, Li H, Li J, Zhao G, Wu W, Liu L, … Guo Y. Absorption and bio-transformation of selenium nanoparticles by wheat seedlings (Triticum aestivum L.). Front Plant Sci 2018;9:597.

  97. Rico CM, Wagner D, Abolade O, Lottes B, Coates K. Metabolomics of wheat grains generationally-exposed to cerium oxide nanoparticles. Sci Total Environ. 2020. https://doi.org/10.1016/j.scitotenv.2019.136487.

    Article  PubMed  Google Scholar 

  98. Al-Amri N, Tombuloglu H, Slimani Y, Akhtar S, Barghouthi M, Almessiere M, Alshammari T, Baykal A, Sabit H, Ercan I, Ozcelik S. Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.). Ecotoxicol Environ Saf. 2020. https://doi.org/10.1016/j.ecoenv.2020.110377.

    Article  PubMed  Google Scholar 

  99. Rico CM, Abolade OM, Wagner D, Lottes B, Rodriguez J, Biagioni R, Andersen CP. Wheat exposure to cerium oxide nanoparticles over three generations reveals transmissible changes in nutrition, biochemical pools, and response to soil N. J Hazard Mater. 2020. https://doi.org/10.1016/j.jhazmat.2019.121364.

    Article  PubMed  Google Scholar 

  100. Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM. Bioavailability of gold nanomaterials to plants: Importance of particle size and surface coating. Environ Sci Technol. 2012. https://doi.org/10.1021/es3019397.

    Article  PubMed  Google Scholar 

  101. Chacón-Madrid K, ZezziArruda MA. Internal standard evaluation for bioimaging soybean leaves through laser ablation inductively coupled plasma mass spectrometry: a plant nanotechnology approach. J Anal At Spectrom. 2018. https://doi.org/10.1039/c8ja00254a.

    Article  Google Scholar 

  102. de Oliveira AP, de Oliveira LF, Nomura CS, Naozuka J. Elemental imaging by laser-induced breakdown spectroscopy to evaluate selenium enrichment effects in edible mushrooms. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-47338-7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Aline Pereira de Oliveira (2017/05009-7, 2019/00663-6, and 2022/02167-9), Juliana Naozuka (2018/06332-9), and Cassiana Seimi Nomura (2021/14125-6) are grateful to the State of São Paulo Research Foundation (FAPESP) for the fellowship provided and financial support, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Naozuka.

Ethics declarations

Human and animal rights and inform consent

This article does not contain any studies with human or animal subjects.

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Elemental Mass Spectrometry for Bioanalysis with guest editors Jörg Bettmer, Mario Corte-Rodríguez, and Márcia Foster Mesko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naozuka, J., Oliveira, A.P. & Nomura, C.S. Evaluation of the effect of nanoparticles on the cultivation of edible plants by ICP-MS: a review. Anal Bioanal Chem 416, 2605–2623 (2024). https://doi.org/10.1007/s00216-023-05076-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05076-w

Keywords

Navigation