Skip to main content

Advertisement

Log in

Development, validation, and implementation of an ultratrace analysis method for the determination of moenomycin A, in aquatic animal products

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Moenomycin A, an antimicrobial growth promoter widely used as an additive in aquaculture feedstuffs, has been restricted for use in the European Union and China due to its potential risk of promoting resistant strains of pathogenic bacteria and causing residues in aquatic animal products. Although methods for analyzing moenomycin A in feedstuffs have been developed, no established method exists for aquatic matrices. In this study, we present, for the first time, a sensitive and validated high-performance liquid chromatography-tandem mass spectrometry (HPLC–MS/MS) method for the determination of moenomycin A in aquatic animal products. Samples were extracted using methanol and purified with the QuEChERS method employing C18 sorbent. The aliquot was dried under a nitrogen stream, reconstituted with methanol-water solvent, and analyzed by HPLC–MS/MS. The developed method exhibited good linearity (r2 > 0.995) over a wide concentration range (1–100 μg/L) and a low limit of detection (1 µg/kg). Average recoveries ranged between 70 and 110% at spiked concentrations of 1, 50, and 100 μg/kg, with associated intra- and inter-day relative standard deviations of 1.25 to 7.32% (n = 6) and 2.91 to 10.08% (n = 3), for different representative aquatic animal production, respectively. To the best of our knowledge, this is the first reported HPLC–MS/MS method for the quantification of moenomycin A in aquatic animal products. The new approach was effectively employed in the analysis of moenomycin A across various aquatic samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zehl M, Pittenauer E, Rizzi A, Allmaier G. Characterization of moenomycin antibiotic complex by multistage MALDI-IT/RTOF-MS and ESI-IT-MS. J Am Soc Mass Spectrom. 2006;17:1081–90. https://doi.org/10.1016/j.jasms.2006.04.019.

    Article  CAS  PubMed  Google Scholar 

  2. Pfaller MA. Flavophospholipol use in animals: positive implications for antimicrobial resistance based on its microbiologic properties. Diag Microbiol Infect Dis. 2006;56:115–121. https://doi.org/10.1016/j.diagmicrobio.2006.03.014.Get rights and content.

  3. Van Heijenoort J. Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology. 2001;11:25R-36R. https://doi.org/10.1093/glycob/11.3.25R.

    Article  PubMed  Google Scholar 

  4. Welzel P. Syntheses around the transglycosylation step in peptidoglycan biosynthesis. Chem Rev. 2005;105:4610–60. https://doi.org/10.1021/cr040634e.

    Article  CAS  PubMed  Google Scholar 

  5. Stembera K, Vogel S, Buchynskyy A, Ayala JA, Welzel P. A surface plasmon resonance analysis of the interaction between the antibiotic moenomycin A and penicillin-binding Protein 1b. ChemBioChem. 2002;3:559–65. https://doi.org/10.1002/1439-7633(20020603)3:6%3c559::AID-CBIC559%3e3.0.CO;2-%23.

    Article  CAS  PubMed  Google Scholar 

  6. Eichhorn P, Aga DS. Characterization of moenomycin antibiotics from medicated chicken feed by ion-trap mass spectrometry with electrospray ionization. Rapid Commun Mass Spectrom. 2005;19:2179–86. https://doi.org/10.1002/rcm.2044.

    Article  CAS  PubMed  Google Scholar 

  7. Paik J, Kern I, Lurz R, Hakenbeck R. Mutational analysis of the Streptococcus pneumoniae bimodular class a penicillin-binding proteins. J Bacteriol. 1999;181(12):3852–6. https://doi.org/10.1128/JB.181.12.3852-3856.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pérez S, McJury BE, Eichhorn P, Aga DS. Determination of the antimicrobial growth promoter moenomycin-A in chicken litter. J Chrom A. 2007;1175:234–41. https://doi.org/10.1016/j.chroma.2007.10.053.

    Article  CAS  Google Scholar 

  9. Butaye P, Devrise LA, Haesebrouck F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev. 2003;16(2):175. https://doi.org/10.1128/CMR.16.2.175-188.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ostash B, Walker S. Moenomycin family antibiotics: chemical synthesis, biosynthesis, and biological activity. Nat Prod Rep. 2010;27:1594–617. https://doi.org/10.1039/C001461N.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cao L, Naylor R, Henriksson P, Leadbitter D, Metian M, Troell M, Zhang WB. China’s aquaculture and the world’s wild fisheries. Science. 2015;347:133–5. https://doi.org/10.1126/science.1260149.

    Article  CAS  PubMed  Google Scholar 

  12. Heßler-Klintz M, Hobert K, Biallaß A, Siegels T, Hiegemann M, Maulshagen A, Müller D, Welzel P, Huber G, Böttger D, Markus A, Seibert G, Stärk A, Fehlhaber HW, Heijenoort YV, Heijenoort JV. The first moenomycin antibiotic without the methyl-branched uronic acid constituent.- Unexpected structure activity relations. Tetrahedron. 1993;49(35):7667–7678. https://doi.org/10.1016/S0040-4020(01)87242-2.

  13. Tseng YY, Liou JM, Cheng WC, Hsu JT, Hsu TL, Wu MS, Wong CH. Combating multidrug-resistant Helicobacter pylori with moenomycin A in combination with clarithromycin or metronidazole. Front Chem. 2022;10:897578. https://doi.org/10.3389/fchem.2022.897578.

  14. Donnerstag A, Hennig L, Findeisen M, Welzel P, Haessner R. 1H NMR as a tool for the structure elucidation of moenomycin antibiotics. Magn Reson Chem. 1996;34(12):1031–5. https://doi.org/10.1002/(SICI)1097-458X(199612)34:12%3c1031::AID-OMR10%3e3.0.CO;2-7.

    Article  CAS  Google Scholar 

  15. El-Abadla N, Lampilas M, Hennig L, Findeisen M, Welzel P, Müller D, Markus A, Heijenoort JV. Moenomycin A: the role of the methyl group in the moenuronamide unit and a general discussion of structure-activity relationships. Tetrahedron. 1999;55(3):699–722. https://doi.org/10.1016/S0040-4020(98)01063-1.

    Article  Google Scholar 

  16. Zhang L, Chen CC, Ko TP, Huang JW, Zheng Y, Liu W, Wang I, Malwal SR, Feng X, Wang K, Huang CH, Hsu STD, Wang AHJ, Oldfield E, Guo RT. Moenomycin biosynthesis: structure and mechanism of action of the prenyfltransferase MoeN5. Angew Chem Int Edit. 2016;55(15):4716–20. https://doi.org/10.1002/anie.201511388.

    Article  CAS  Google Scholar 

  17. Xu H, Zhang H, Wang F, Zhang X, Cai X. Determination of moenomycin A residues in poultry tissues by liquid chromatography-tandem mass spectrometry. J Food Safety Quality. 2014;5(12):3784–3789. http://chinafoodj.ijournals.cn/ch/reader/view_abstract.aspx?file_no=20141112004&flag=1.

  18. Gallo P, Fabbrocino S, Serpe L, Fiori M, Civitareale C, Stacchini P. Determination of the banned growth promoter moenomycin A in feed stuffs by liquid chromatography coupled to electrospray ion trap mass spectrometry. Rapid Commun Mass Sp. 2010;24(7):1017–24. https://doi.org/10.1002/rcm.4478.

    Article  CAS  Google Scholar 

  19. Commission E. Eight Commission Directive of 15 June 1978 establishing Community methods of analysis for the official control of feeding stuffs (78/633/EEC). Off J Eur Commun. 1978;L206:43.

    Google Scholar 

  20. Gavalchin J, Katz SE. The persistence of fecal-borne antibiotics in soil. J AOAC Int. 1994;77:481. https://doi.org/10.1039/ja994090011n.

    Article  CAS  Google Scholar 

  21. Chen B, Li R, Guo Y, Yang K, Chen G, Ma X. Purification and preparation of moenomycin A from fermentation broth by multidimensional chromatography. Chromatographia. 2016;79:667–74. https://doi.org/10.1007/s10337-016-3086-0.

    Article  CAS  Google Scholar 

  22. Fehlhaber HW, Girg M, Seibert G, Hobert k, Welzel P, Heijenoort YV, Heijenoort JV. Tetrahedron. 1990;46(5):1557–1568. https://doi.org/10.1016/S0040-4020(01)81965-7.

  23. Li J, Sha M, Li X, Yin D. Determination of flavomycin A in feed by liquid chromatography tandem mass spectrometry. Chin J Vet Med. 2012;46(9):22‒25. http://zgsyzz.ivdc.org.cn/zhonggsyzz/ch/reader/view_abstract.aspx?file_no=20120326001&flag=1#.

  24. GB/T 30891, 2014. Practice of sampling plans for aquatic products. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration of the People’s Republic of China.

  25. European Commission. Analytical quality control and method validation procedure for pesticide residues analysis in food and feed. SANTE/11312/2021; 2021.

  26. Yuan JP, Sun YM, Zhao J, Yao YX. Rapid determination of hexabromocyclododecane enantiomers in animal meat by matrix solid phase dispersion coupled with LC–MS/MS. Food Chem. 2022;394:133405. https://doi.org/10.1016/j.foodchem.2022.133405.

  27. Lee SW, Choi JH, Cho SK, Yu HA, El-Aty AMA, Shim JH. Development of a new QuEChERS method based on dry ice for the determination of 168 pesticides in paprika using tandem mass spectrometry. J Chrom A. 2011;1218:4366–77. https://doi.org/10.1016/j.chroma.2011.05.021.

    Article  CAS  Google Scholar 

  28. Wang X, Wang M, Zhang K, Hou T, Zhang L, Fei C, Xue F, Hang T. Determination of virginiamycin M1 residue in tissues of swine and chicken by ultra-performance liquid chromatography tandem mass spectrometry. Food Chem. 2018;250:127–33. https://doi.org/10.1016/j.foodchem.2018.01.024.

    Article  CAS  PubMed  Google Scholar 

  29. Chaudhary DV, Patel DP, Shah PA, Shah JV, Sanyal M, Shrivastav PS. Determination of lercanidipine in human plasma by an improved UPLC–MS/MS method for a bioequivalence study. J Pharm Anal. 2016;6(2):87–94. https://doi.org/10.1016/j.jpha.2015.09.001.

    Article  PubMed  Google Scholar 

  30. Chen M, Zhang Y, Wang F, Zheng N, Wang J. Simultaneous determination of C18 fatty acids in milk by GC-MS. Separations. 2021;8(8):118. https://doi.org/10.3390/separations8080118.

    Article  CAS  Google Scholar 

  31. Alcantara-Duran J, Moreno-Gonzalez D, Garcia-Reyes JF, Molina-Diaz A. Use of a modified QuEChERS method for the determination of mycotoxin residues in edible nuts by nano flow liquid chromatography high resolution mass spectrometry. Food Chem. 2019;279:144–9. https://doi.org/10.1016/j.foodchem.2018.11.149.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao L, Lucas D, Long D, Richter B, Stevens J. Multi-class multi-residue analysis of veterinary drugs in meat using enhanced matrix removal lipid cleanup and liquid chromatography-tandem mass spectrometry. J Chrom A. 2018;1549:14–24. https://doi.org/10.1016/j.chroma.2018.03.033.

    Article  CAS  Google Scholar 

  33. Zhao JH, Hu LX, He LX, Wang YQ, Liu J, Zhao JL, Liu YS, Ying GG. Rapid target and non-target screening method for determination of emerging organic chemicals in fish. J Chrom A. 2022;1676:463185. https://doi.org/10.1016/j.chroma.2022.463185.

  34. Schenck FJ, Lehotay SJ, Vega V. Comparison of solid-phase extraction sorbents for cleanup in pesticide residue analysis of fresh fruits and vegetables. J Sep Sci. 2002;25(14):883–90. https://doi.org/10.1002/1615-9314(20021001)25:14%3c883::AID-JSSC883%3e3.0.CO;2-7.

    Article  CAS  Google Scholar 

  35. Li J, Zhang J, Liu H, Wu L. A comparative study of primary secondary amino (PSA) and multi-walled carbon nanotubes (MWCNTs) as QuEChERS absorbents for the rapid determination of diazepam and its major metabolites in fish samples by high-performance liquid chromatography–electrospray ionisation–tandem mass spectrometry. J Sci Food Agric. 2016;96:555–60. https://doi.org/10.1002/jsfa.7123.

    Article  PubMed  Google Scholar 

  36. Lehotay SJ, Mastovska K, Yun SJ. Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrices. J AOAC Int. 2005;88:630–8.

    Article  CAS  PubMed  Google Scholar 

  37. Alcántara-Durán J, Moreno-González D, García-Reyes JF, Molina-Díaz A. Use of a modified QuEChERS method for the determination of mycotoxin residues in edible nuts by nano flow liquid chromatography high resolution mass spectrometry. Food Chem. 2019;279:144–9. https://doi.org/10.1016/j.foodchem.2018.11.149.

    Article  CAS  PubMed  Google Scholar 

  38. Yang CW, Zhang X, Yuan L, Wang YK, Sheng GP. Deciphering the microheterogeneous repartition effect of environmental matrix on surface-enhanced Raman spectroscopy (SERS) analysis for pollutants in natural waters. Water Res. 2023;232:119668. https://doi.org/10.1016/j.watres.2023.119668.

  39. Niessen WMA, Manini P, Andreoli R. Matrix effects in quantitative pesticide analysis using liquid chromatography-mass spectrometry. Mass Spectrum Rev. 2006;25(6):881–99. https://doi.org/10.1002/mas.20097.

    Article  CAS  Google Scholar 

  40. Gajda A, Posyniak A, Zmudzki J, Tomczyk G. Determination of doxycycline in chicken fat by liquid chromatography with UV detection and liquid chromatography-tandem mass spectrometry. J Chrom B. 2013;928:113–20. https://doi.org/10.1016/j.jchromb.2013.03.011.

    Article  CAS  Google Scholar 

  41. Chen J, Wei Z, Cao XY. QuEChERS pretreatment combined with ultra-performance liquid chromatography-tandem mass spectrometry for the determination of four veterinary drug residues in marine products. Food Anal Method. 2019;12:1055–66. https://doi.org/10.1007/s12161-018-01431-1.

    Article  CAS  Google Scholar 

  42. Nasiri A, Jahani R, Mokhtari S, Yazdanpanah H, Daraei B, Faizi M, Kobarfard F. Overview, consequences, and strategies for overcoming matrix effects in LC-MS analysis: a critical review. Analyst. 2021;146:6049–6063. https://doi.org/10.1039/D1AN01047F.

  43. Wang F, Lin W, Lv S, Jiang S, Lin L, Lu J. Comparison of lipids extracted by different methods from Chinese mitten crab (Eriocheir sinensis) hepatopancreas. J Food Sci. 2019;84(12):3594–600. https://doi.org/10.1111/1750-3841.14946.

    Article  CAS  PubMed  Google Scholar 

  44. Maldonado-Reina AJ, López-Ruiz R, Romero-González R, Martínez Vidal JL, Garrido-Frenich A. Assessment of co-formulants in marketed plant protection products by LC-Q-Orbitrap-MS: application of a hybrid data treatment strategy combining suspect screening and unknown analysis. J Agric Food Chem. 2022;70:7302–13. https://doi.org/10.1021/acs.jafc.2c01152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work received financial support from the 2019 Agricultural National Standard Development Project (SCB-20023), and the Central Public-interest Scientific Institution Basal Research Fund, ECSFR, CAFS (2018T02).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Dongmei Huang, Weiyi Zhang, and Cong Kong. Methodology: Yunyu Tang, Guangxin Yang. Formal analysis and investigation: Yunyu Tang, Yingqing Ma, and Guangxin Yang. Validation: Xuan Zhang, Siman Li, and Weiyi Zhang. Visualization: Dongmei Huang. Writing — original draft preparation: Yunyu Tang. Writing — review and editing: Cong Kong, Essy Kouadio Fodjo, and Wenlei Zhai. Funding acquisition: Dongmei Huang. Resources: Dongmei Huang and Cong Kong. Supervision: Cong Kong and Yongfu Shi.

Corresponding authors

Correspondence to Dongmei Huang, Weiyi Zhang or Cong Kong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Food Safety Analysis 2.0 with guest editor Steven J. Lehotay.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1360 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Yang, G., Ma, Y. et al. Development, validation, and implementation of an ultratrace analysis method for the determination of moenomycin A, in aquatic animal products. Anal Bioanal Chem 416, 745–757 (2024). https://doi.org/10.1007/s00216-023-04965-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04965-4

Keywords

Navigation