Skip to main content
Log in

Novel zone elution mode in coiled tube field-flow fractionation for online separation and characterization of environmental submicron particles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Coiled tube field-flow fractionation (CTFFF) is currently applied to environmental and material studies. In the present work, a novel zone elution mode in CTFFF has been proposed and developed. Zone elution mode is based on the separation of particles by stepwise decreasing the flow rate of the carrier fluid and their subsequent elution at a constant flow rate. The fractionation parameters were optimized using a mixture of standard silica submicron particles (150, 390, and 900 nm). Taking samples of volcanic ash as examples, it has been demonstrated that zone elution mode can be successfully used for the fractionation of environmental nano- and submicron particles. For the first time, CTFFF was coupled online with a dynamic light scattering detector for the size characterization of eluted particles. Zone elution in CTFFF can serve for the further development of hyphenated techniques enabling efficient fractionation and size/elemental characterization of environmental particles in nano- and submicrometric size ranges.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, Castillo JR. Detection, characterization and quantification of inorganic engineered nanomaterials: a review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta. 2016;904:10–32. https://doi.org/10.1016/j.aca.2015.11.008.

    Article  CAS  PubMed  Google Scholar 

  2. Fedotov PS, Vanifatova NG, Shkinev VM, Spivakov BYa. Fractionation and characterization of nano- and microparticles in liquid media. Anal Bioanal Chem. 2011;400:1787–1804. https://doi.org/10.1007/s00216-011-4704-1.

  3. Krystek P, Ulrich A, Garcia CC, Manohar S, Ritsema R. Application of plasma spectrometry for the analysis of engineered nanoparticles in suspensions and products. J Anal At Spectrom. 2011;26:1701. https://doi.org/10.1039/c1ja10071h.

    Article  CAS  Google Scholar 

  4. ISO/TS 80004-2:2015 – Nanotechnologies – Vocabulary – Part 2: Nano-objects. International Organization for Standardization. 2015:10

  5. Buffle J, van Leeuwen HP (eds.). Environmental particles. Vol. 1. (IUPAC Environmental analytical and physical chemistry series). Boca Raton: Lewis Publishers; 1992. p. 554.

  6. López-Sanz S, Fariñas NR, Martín-Doimeadios R del CR, Ríos Á. Analytical strategy based on asymmetric flow field flow fractionation hyphenated to ICP-MS and complementary techniques to study gold nanoparticles transformations in cell culture medium. Anal Chim Acta. 2019;1053:178–185. https://doi.org/10.1016/j.aca.2018.11.053.

  7. Montaño MD, von der Kammer F, Cuss CW, Ranville JF. Opportunities for examining the natural nanogeochemical environment using recent advances in nanoparticle analysis. J Anal At Spectrom. 2019;34:1768–72. https://doi.org/10.1039/C9JA00168A.

    Article  Google Scholar 

  8. Dutschke F, Irrgeher J, Pröfrock D. Optimisation of an extraction/leaching procedure for the characterisation and quantification of titanium dioxide (TiO 2) nanoparticles in aquatic environments using SdFFF-ICP-MS and SEM-EDX analyses. Anal Methods. 2017;9:3626–35. https://doi.org/10.1039/C7AY00635G.

    Article  CAS  Google Scholar 

  9. Radebe NW, Beskers T, Greyling G, Pasch H. Online coupling of thermal field-flow fractionation and Fourier transform infrared spectroscopy as a powerful tool for polymer characterization. J Chromatogr A. 2019;1587:180–8. https://doi.org/10.1016/j.chroma.2018.12.012.

    Article  CAS  PubMed  Google Scholar 

  10. Pergantis SA, Jones-Lepp TL, Heithmar EM. Hydrodynamic chromatography online with single particle-inductively coupled plasma mass spectrometry for ultratrace detection of metal-containing nanoparticles. Anal Chem. 2012;84:6454–62. https://doi.org/10.1021/ac300302j.

    Article  CAS  PubMed  Google Scholar 

  11. López-Sanz S, Fariñas NR, Zougagh M, Martín-Doimeadios R del CR, Ríos Á. AF4-ICP-MS as a powerful tool for the separation of gold nanorods and nanospheres. J Anal At Spectrom. 2020;35:1530–1536. https://doi.org/10.1039/D0JA00123F.

  12. Kruszewska J, Matczuk M, Skorupska S, Grabowska-Jadach I, Hernández EP, Timerbaev A, Jarosz M. Characterization of quantum dots in cancer cytosol using ICP-MS-based combined techniques. Anal Biochem. 2019;584:113387. https://doi.org/10.1016/j.ab.2019.113387.

  13. Faucher S, Ivaneev AI, Fedotov PS, Lespes G. Characterization of volcanic ash nanoparticles and study of their fate in aqueous medium by asymmetric flow field-flow fractionation–multi-detection. Environ Sci Pollut Res. 2021;28:31850–31860. https://doi.org/10.1007/s11356-021-12891-0.

    Article  Google Scholar 

  14. Lespes G, Gigault J. Hyphenated analytical techniques for multidimensional characterisation of submicron particles: a review. Anal Chim Acta. 2011;692:26–41. https://doi.org/10.1016/j.aca.2011.02.052.

    Article  CAS  PubMed  Google Scholar 

  15. Ivaneev AI, Ermolin MS, Fedotov PS, Faucher S, Lespes G. Sedimentation field-flow fractionation in thin channels and rotating coiled columns: from analytical to preparative scale separations. Sep Purif Rev. 2021;50:363–79. https://doi.org/10.1080/15422119.2020.1784940.

    Article  CAS  Google Scholar 

  16. Giddings JC. A new separation concept based on a coupling of concentration and flow nonuniformities. Sep Sci. 1966;1:123–5. https://doi.org/10.1080/01496396608049439.

    Article  CAS  Google Scholar 

  17. Baalousha M, Stolpe B, Lead JR. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J Chromatogr A. 2011;1218:4078–103. https://doi.org/10.1016/j.chroma.2011.04.063.

    Article  CAS  PubMed  Google Scholar 

  18. Giddings JC. Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science. 1993;260:1456–65.

    Article  CAS  PubMed  Google Scholar 

  19. Cölfen H, Antonietti M. Field-flow fractionation techniques for polymer and colloid analysis. Berlin, Heidelberg: Springer; 2000. p. 67–187.

    Google Scholar 

  20. Ivaneev AI, Faucher S, Ermolin MS, Karandashev VK, Fedotov PS, Lespes G. Separation of nanoparticles from polydisperse environmental samples: comparative study of filtration, sedimentation, and coiled tube field-flow fractionation. Anal Bioanal Chem. 2019;411:8011–21. https://doi.org/10.1007/s00216-019-02147-9.

    Article  CAS  PubMed  Google Scholar 

  21. Ermolin MS, Fedotov PS, Malik NA, Karandashev VK. Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale. Chemosphere. 2018;200:16–22. https://doi.org/10.1016/j.chemosphere.2018.02.089.

    Article  CAS  PubMed  Google Scholar 

  22. Ermolin MS, Fedotov PS, Ivaneev AI, Karandashev VK, Fedyunina NN, Burmistrov AA. A contribution of nanoscale particles of road-deposited sediments to the pollution of urban runoff by heavy metals. Chemosphere. 2018;210:65–75. https://doi.org/10.1016/j.chemosphere.2018.06.150.

    Article  CAS  PubMed  Google Scholar 

  23. Ermolin MS, Fedotov PS, Ivaneev AI, Karandashev VK, Fedyunina NN, Eskina V. Isolation and quantitative analysis of road dust nanoparticles. J Anal Chem. 2017;72:520–32. https://doi.org/10.1134/S1061934817050057.

    Article  CAS  Google Scholar 

  24. Ermolin MS, Ivaneev AI, Fedyunina NN, Karandashev VK, Burmistrov AA, Fedotov PS. Natural silicate nanoparticles: separation, characterization, and assessment of stability and perspectives of their use as reference nanomaterials. Anal Bioanal Chem. 2021;413:3999–4012. https://doi.org/10.1007/S00216-021-03351-2/TABLES/2.

    Article  CAS  PubMed  Google Scholar 

  25. Fedotov PS, Ermolin MS, Katasonova ON. Field-flow fractionation of nano- and microparticles in rotating coiled columns. J Chromatogr A. 2015;1381:202–9. https://doi.org/10.1016/j.chroma.2014.12.079.

    Article  CAS  PubMed  Google Scholar 

  26. Fedotov PS, Kronrod VA, Kasatonova ON. Simulation of the motion of solid particles in the carrier liquid flow in a rotating coiled column. J Anal Chem. 2005;60:310–6. https://doi.org/10.1007/s10809-005-0090-1.

    Article  CAS  Google Scholar 

  27. Ermolin MS, Fedotov PS, Levashov EA, Savonina EY, Ivaneev AI. Field-flow fractionation of metallic microparticles in a rotating coiled column. Mendeleev Commun. 2016;26:58–359. https://doi.org/10.1016/j.mencom.2016.07.031.

  28. Ermolin MS, Fedotov PS, Ivaneev AI, Karandashev VK, Burmistrov AA, Tatsy YG. Assessment of elemental composition and properties of copper smelter-affected dust and its nano- and micron size fractions. Environ Sci Pollut Res. 2019;23:23781–90. https://doi.org/10.1007/s11356-018-3180-y.

    Article  CAS  Google Scholar 

  29. Claveranne-Lamolre C, Aupiais J, Lespes G, Frayret J, Pili E, Pointurier F, Potin-Gautier M. Investigation of uranium-colloid interactions in soil by dual field-flow fractionation/capillary electrophoresis hyphenated with inductively coupled plasma-mass spectrometry. Talanta. 2011;85:2504–10. https://doi.org/10.1016/j.talanta.2011.07.100.

    Article  CAS  Google Scholar 

  30. Harguindeguy S, Crançon P, Potin Gautier M, Pointurier F, Lespes G. Colloidal mobilization from soil and transport of uranium in (sub)-surface waters. Environ Sci Pollut Res. 2019;26:5294–304. https://doi.org/10.1007/s11356-018-2732-5.

    Article  CAS  Google Scholar 

  31. Gogos A, Kaegi R, Zenobi R, Bucheli TD. Capabilities of asymmetric flow field-flow fractionation coupled to multi-angle light scattering to detect carbon nanotubes in soot and soil. Environ Sci Nano. 2014;1:584–94. https://doi.org/10.1039/C4EN00070F.

    Article  CAS  Google Scholar 

  32. Makan AC, Spallek MJ, du Toit M, Klein T, Pasch H. Advanced analysis of polymer emulsions: particle size and particle size distribution by field-flow fractionation and dynamic light scattering. J Chromatogr A. 2016;1442:94–106. https://doi.org/10.1016/J.CHROMA.2016.03.013.

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt B, Loeschner K, Hadrup N, Mortensen A, Sloth JJ, Bender Koch C, Larsen EH. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Anal Chem. 2011;83:2461–8. https://doi.org/10.1021/ac102545e.

    Article  CAS  PubMed  Google Scholar 

  34. Ivaneev AI, Ermolin MS, Fedotov PS. Separation, characterization, and analysis of environmental nano- and microparticles: state-of-the-art methods and approaches. J Anal Chem. 2021;76:413–29. https://doi.org/10.1134/S1061934821040055.

    Article  CAS  Google Scholar 

  35. Lespes G, Gigault J, Battu S. Field flow fractionation. In: Analytical Separation Science. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 1143–76.

    Chapter  Google Scholar 

  36. Giorgi F, Curran JM, Gilliland D, La Spina R, Whelan M, Patterson EA. Limitations of nanoparticles size characterization by asymmetric flow field-fractionation coupled with online dynamic light scattering. Chromatographia. 2021;84:199–206. https://doi.org/10.1007/S10337-020-03997-7/FIGURES/5.

    Article  CAS  Google Scholar 

  37. Sitar S, Vezocňik V, Macěk P, Kogej K, Pahovnik D, Žagar E. Pitfalls in size characterization of soft particles by dynamic light scattering online coupled to asymmetrical flow field-flow fractionation. Anal Chem. 2017;89:11744–52. https://doi.org/10.1021/acs.analchem.7b03251.

    Article  CAS  PubMed  Google Scholar 

  38. Beckett R, Giddings JC. Entropic contribution to the retention of nonspherical particles in field-flow fractionation. J Colloid Interface Sci. 1997;186:53–9. https://doi.org/10.1006/JCIS.1996.4612.

    Article  CAS  PubMed  Google Scholar 

  39. Alfi M, Park J. Theoretical analysis of the local orientation effect and the lift-hyperlayer mode of rodlike particles in field-flow fractionation. J Sep Sci. 2014;37:876–83. https://doi.org/10.1002/JSSC.201300902.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study corresponds to the research plan of the Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences. The authors are indebted to Dr. Olesya N. Katasonova for SEM analysis.

Funding

The work was supported by the Russian Science Foundation, project n. 22-13-00316 (fractionation and characterization of volcanic ash), and the Russian Foundation for Basic Research, project n. 20-03-00274 (development of a new fractionation mode using standard samples).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandr I. Ivaneev or Mikhail S. Ermolin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2368 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivaneev, A.I., Ermolin, M.S., Fedotov, P.S. et al. Novel zone elution mode in coiled tube field-flow fractionation for online separation and characterization of environmental submicron particles. Anal Bioanal Chem 415, 6363–6373 (2023). https://doi.org/10.1007/s00216-023-04913-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04913-2

Keywords

Navigation