Skip to main content
Log in

Development of novel isobaric tags enables accurate and sensitive multiplexed proteomics using complementary ions

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

High-throughput quantitative analysis of the cells’ proteomes across multiple conditions such as various perturbations and different time points is essential for gaining insights into treatment-induced biological responses or disease pathological states. The advancements in mass spectrometry instrumentation and isobaric labeling methods provided useful tools to help address such demands. However, the current widely adopted isobaric labeling methods such as tandem mass tag (TMT) and isobaric tags for relative and absolute quantitation (iTRAQ) are based on low-mass reporter ions, which are indistinguishable among different peptide analytes, to achieve relative quantification. Therefore, these methods intrinsically suffer from severe ratio distortion when analyzing complex samples due to peptide coelution and cofragmentation. Here, we developed a novel set of isobaric tags named dimethylated leucine complementary ion (DiLeuC) and relied on complementary ions for relative quantification, in which the complementary ions are the remanent peptide segments after fragmentation in the high-mass range. Since those residual peptide fragments are precursor-specific, they retain the relative abundance information in an interference-free manner even in a complex matrix environment. The quantification accuracy of our method was validated in a two-proteome model where the yeast proteome was spiked with a strong background human proteome as interference. In addition, we also applied this strategy to single-cell proteome analysis, demonstrating its potential utility for sensitive high-throughput quantitative proteomics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vincent CE, Rensvold JW, Westphall MS, Pagliarini DJ, Coon JJ. Automated gas-phase purification for accurate, multiplexed quantification on a stand-alone ion-trap mass spectrometer. Anal Chem. 2013;85(4):2079–86.

    Article  CAS  PubMed  Google Scholar 

  2. Dayon L, Affolter M. Progress and pitfalls of using isobaric mass tags for proteome profiling. Expert Rev Proteomics. 2020;17(2):149–61.

    Article  CAS  PubMed  Google Scholar 

  3. Ting L, Rad R, Gygi SP, Haas W. MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods. 2011;8(11):937–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McAlister GC, Nusinow DP, Jedrychowski MP, Wuhr M, Huttlin EL, Erickson BK, et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem. 2014;86(14):7150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Furtwangler B, Uresin N, Motamedchaboki K, Huguet R, Lopez-Ferrer D, Zabrouskov V, et al. Real-time search-assisted acquisition on a tribrid mass spectrometer improves coverage in multiplexed single-cell proteomics. Molec Cell Proteomics. 2022;21(4):100219.

    Article  CAS  Google Scholar 

  6. Wuhr M, Haas W, McAlister GC, Peshkin L, Rad R, Kirschner MW, et al. Accurate multiplexed proteomics at the MS2 level using the complement reporter ion cluster. Anal Chem. 2012;84(21):9214–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sonnett M, Yeung E, Wuhr M. Accurate, sensitive, and precise multiplexed proteomics using the complement reporter ion cluster. Anal Chem. 2018;90(8):5032–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnson A, Stadlmeier M, Wühr M. TMTpro complementary ion quantification increases plexing and sensitivity for accurate multiplexed proteomics at the MS2 level. J Proteome Res. 2021;20(6):3043–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Winter SV, Meier F, Wichmann C, Cox J, Mann M, Meissner F. EASI-tag enables accurate multiplexed and interference-free MS2-based proteome quantification. Nat Methods. 2018;15(7):527.

    Article  Google Scholar 

  10. Stadlmeier M, Bogena J, Wallner M, Wuhr M, Carell T. A Sulfoxide-based isobaric labelling reagent for accurate quantitative mass spectrometry. Angewandte Chemie-Int Ed. 2018;57(11):2958–62.

    Article  CAS  Google Scholar 

  11. Tian XB, de Vries MP, Visscher SWJ, Permentier HP, Bischoff R. Selective maleylation-directed isobaric peptide termini labeling for accurate proteome quantification. Anal Chem. 2020;92(11):7836–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ikeda D, Ageta H, Tsuchida K, Yamada H. iTRAQ-based proteomics reveals novel biomarkers of osteoarthritis. Biomarkers. 2013;18(7):565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiang F, Ye H, Chen RB, Fu Q, Li LJ. N, N-Dimethyl leucines as novel isobaric tandem mass tags for quantitative proteomics and peptidomics. Anal Chem. 2010;82(7):2817–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li MY, Gu TJ, Lin XR, Li LJ. DiLeuPMP: a multiplexed isobaric labeling method for quantitative analysis of O-glycans. Anal Chem. 2021;93(28):9845–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li MY, Zhong XF, Feng Y, Li LJ. Novel isobaric tagging reagent enabled multiplex quantitative glycoproteomics via electron-transfer/higher-energy collisional dissociation (EThcD) mass spectrometry. J Am Soc Mass Spectrom. 2022;33(10):1874–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li MY, Feng Y, Ma M, Kapur A, Patankar M, Li LJ. High-throughput quantitative glycomics enabled by 12-plex isobaric multiplex labeling reagents for carbonyl-containing compound (SUGAR) tags. J Proteome Res. 2023;22(5):1557–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feng Y, Li MY, Lin YY, Chen BM, Li LJ. Multiplex quantitative glycomics enabled by periodate oxidation and triplex mass defect isobaric multiplex reagents for carbonyl-containing compound tags. Anal Chem. 2019;91(18):11932–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hartlmayr D, Ctortecka C, Seth A, Mendjan S, Tourniaire G, Mechtler KJB. An automated workflow for labelfree and multiplexed single cell proteomics sample preparation at unprecedented sensitivity. bioRxiv. 2021.04.14.439828. https://doi.org/10.1101/2021.04.14.439828.

  19. Schaab C, Geiger T, Stoehr G, Cox J, Mann MJM, Proteomics C. Analysis of high accuracy, quantitative proteomics data in the MaxQB database. Molec Cell Proteom. 2012;11(3):M111.014068.

    Article  Google Scholar 

  20. Johnson A, Stadlmeier M, Wühr M. TMTpro complementary ion quantification increases plexing and sensitivity for accurate multiplexed proteomics at the MS2 Level. J Proteome Res. 2021;20(6):3043–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. R Core Team R. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2021

  22. Tsakos M, Schaffert ES, Clement LL, Villadsen NL, Poulsen TB. Ester coupling reactions - an enduring challenge in the chemical synthesis of bioactive natural products. Nat Prod Rep. 2015;32(4):605–32.

    Article  CAS  PubMed  Google Scholar 

  23. Chen Z, Wang Q, Lin L, Tang Q, Edwards JL, Li S, et al. Comparative evaluation of two isobaric labeling tags DiART and iTRAQ. Anal Chem. 2012;84(6):2908–15.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenberger FA, Thielert M, Mann MJNM. Making single-cell proteomics biologically relevant. Nat Methods. 2023;20(3):320–3.

    Article  CAS  PubMed  Google Scholar 

  25. Bennett HM, Stephenson W, Rose CM, Darmanis SJNM. Singlecell proteomics enabled by next-generation sequencing or mass spectrometry. Nat Methods. 2023;20(3):363–74.

    Article  CAS  PubMed  Google Scholar 

  26. Cong Y, Liang Y, Motamedchaboki K, Huguet R, Truong T, Zhao R, et al. Improved single-cell proteome coverage using narrow-bore packed NanoLC columns and ultrasensitive mass spectrometry. Anal Chem. 2020;92(3):2665–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu Y, Piehowski PD, Zhao R, Chen J, Shen Y, Moore RJ, et al. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. Nat Commun. 2018;9(1):882.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brunner AD, Thielert M, Vasilopoulou C, Ammar C, Coscia F, Mund A, et al. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. Mol Syst Biol. 2022;18(3): e10798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Budnik B, Levy E, Harmange G, Slavov NJ. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 2018;19:1–12.

    Article  Google Scholar 

  30. Gu L, Li Z, Wang Q, Zhang H, Li X, Li J, et al. An ultra-sensitive and easy-to-use multiplexed single-cell proteomic analysis. bioRxiv 2022.01.02.474723. https://doi.org/10.1101/2022.01.02.474723.

Download references

Acknowledgements

The authors wish to thank SCIENION US Inc. for providing access to a cellenONE system for some of the single-cell analysis work.

Funding

This study was supported in part by grant funding from the NIH (R01AG052324, R01DK071801, and P41GM108538). L.L. acknowledges funding support of NIH funding R01AG078794 and shared instrument grants (NIH-NCRR S10RR029531, S10OD028473, and S10OD025084), a Vilas Distinguished Achievement Professorship, and the Charles Melbourne Johnson Distinguished Chair Professorship with funding provided by the Wisconsin Alumni Research Foundation and the University of Wisconsin–Madison School of Pharmacy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingjun Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Recent Advances in Ultrasensitive Omics Techniques with guest editor Joseph Zaia.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1840 KB)

Supplementary file2 (XLSX 404 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Ma, M. & Li, L. Development of novel isobaric tags enables accurate and sensitive multiplexed proteomics using complementary ions. Anal Bioanal Chem 415, 6951–6960 (2023). https://doi.org/10.1007/s00216-023-04877-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04877-3

Keywords

Navigation