Skip to main content
Log in

Platinum and palladium nanoparticles on boron-doped diamond for the electrochemical detection of hydrogen peroxide: a comparison study

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2) plays a role in many facets — a household item, an important industrial chemical, a biomarker in vivo, and several others. For this reason, its measurement and quantification in a variety of media are important. While spectroscopic detection is primarily used for H2O2, electrochemical methods offer advantages in versatility, cost, and sensitivity. In this work, we investigate a 2-step surface metal nanoparticle (NP) modification for platinum (Pt) and palladium (Pd) on boron-doped diamond (BDD) electrodes for the detection of H2O2. Several parameters such as the metal salt concentration and electrodeposition charge in the 2-step modification were varied to find an optimum. Using cyclic voltammetry (CV), the BDD-PdNP electrode types were found to yield a sharper, more well-resolved H2O2 oxidation peak compared to the BDD-PtNP electrodes. Both metal NP electrode types significantly improved the response compared to the bare BDD electrode; a 150–200× improvement in sensitivity was observed across all modified electrode types. Calibration experiments were completed at both low and high concentration ranges in stagnant and flow-based solutions. The lowest limit of detection (LOD) obtained was 50 nM (5E-08 M) on a BDD-PdNP electrode modified with 1.0 mM PdCl2 to 5.0 mC in the wet chemical seeding and electrodeposition steps. 0.25 mM PdCl2 to 3.23 mC and 0.25 mM HPtCl6 to 3.23 mC also yielded a sufficient response for low-level H2O2, with LODs around 100 nM (1E-07 M). Overall, this work exemplifies the wide applicability of BDD and achieves sub-μM H2O2 LODs with a non-enzymatic electrode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu W, Pan H, Liu C, Su C, Liu W, Wang K, Jiang J. Ultrathin phthalocyanine-conjugated polymer nanosheet-based electrochemical platform for accurately detecting H2O2 in real time. ACS Appl Mater Interfaces. 2019;11(12):11466–73. https://doi.org/10.1021/acsami.8b22686.

    Article  CAS  PubMed  Google Scholar 

  2. Jiang Y, Ni P, Chen C, Lu Y, Yang P, Kong B, Fisher A, Wang X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv Energy Mater. 2018;8(31):1801909. https://doi.org/10.1002/aenm.201801909.

    Article  CAS  Google Scholar 

  3. Yamanaka I, Onizawa T, Takenaka S, Otsuka K. Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system. Angew Chem. 2003;115(31):3781–3. https://doi.org/10.1002/ange.200351343.

    Article  Google Scholar 

  4. Zhao H, Shen X, Chen Y, Zhang SN, Gao P, Zhen X, Li XH, Zhao G. A COOH-terminated nitrogen-doped carbon aerogel as a bulk electrode for completely selective two-electron oxygen reduction to H2O2. Chem Commun. 2019;55(44):6173–6. https://doi.org/10.1039/C9CC02580D.

    Article  CAS  Google Scholar 

  5. Campos-Martin JM, Blanco-Brieva G, Fierro JL. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed. 2006;45(42):6962–84.

    Article  CAS  Google Scholar 

  6. Zhang Q, Fu S, Li H, Liu Y. A novel method for the determination of hydrogen peroxide in bleaching effluents by spectroscopy. BioResources. 2013;8(3):3699–705.

    Article  Google Scholar 

  7. Kwon M, Kim S, Yoon Y, Jung Y, Hwang TM, Lee J, Kang JW. Comparative evaluation of ibuprofen removal by UV/H2O2 and UV/S2O82− processes for wastewater treatment. Chem Eng J. 2015;269:379–90. https://doi.org/10.1016/j.cej.2015.01.125.

    Article  CAS  Google Scholar 

  8. Xu M, Bunes BR, Zang L. Paper-based vapor detection of hydrogen peroxide: colorimetric sensing with tunable interface. ACS Appl Mater Interfaces. 2011;3(3):642–7. https://doi.org/10.1021/am1012535.

    Article  CAS  PubMed  Google Scholar 

  9. Kogularasu S, Govindasamy M, Chen SM, Akilarasan M, Mani V. 3D graphene oxide-cobalt oxide polyhedrons for highly sensitive non-enzymatic electrochemical determination of hydrogen peroxide. Sens Actuators B. 2017;253:773–83. https://doi.org/10.1016/j.snb.2017.06.172.

    Article  CAS  Google Scholar 

  10. Lu CP, Lin CT, Chang CM, Wu SH, Lo LC. Nitrophenylboronic acids as highly chemoselective probes to detect hydrogen peroxide in foods and agricultural products. J Agric Food Chem. 2011;59(21):11403–6. https://doi.org/10.1021/jf202874r.

    Article  CAS  PubMed  Google Scholar 

  11. Ping J, Mao X, Fan K, Li D, Ru S, Wu J, Ying Y. A Prussian blue-based amperometric sensor for the determination of hydrogen peroxide residues in milk. Ionics. 2010;16:523–7. https://doi.org/10.1007/s11581-010-0418-1.

    Article  CAS  Google Scholar 

  12. Nasirizadeh N, Shekari Z, Nazari A, Tabatabaee M. Fabrication of a novel electrochemical sensor for determination of hydrogen peroxide in different fruit juice samples. J Food Drug Anal. 2016;24(1):72–82. https://doi.org/10.1016/j.jfda.2015.06.006.

    Article  CAS  PubMed  Google Scholar 

  13. Ivanova AS, Merkuleva AD, Andreev SV, Sakharov KA. Method for determination of hydrogen peroxide in adulterated milk using high performance liquid chromatography. Food Chem. 2019;283:431–6. https://doi.org/10.1016/j.foodchem.2019.01.051.

    Article  CAS  PubMed  Google Scholar 

  14. Food and Drug Administration Department of Health and Human Services. Part 184: Direct food substances affirmed as generally recognized as safe. 21CFR184.1366_Food and drugs. Washington DC: FDA; 1981.

  15. Food and Drug Administration Department of Health and Human Services. Part 178: Indirect food additives: Adjuvants, production aids, and sanitizers. 21CFR178.1005_Food and drugs. Washington DC: FDA; 1981.

  16. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: harms and benefits for human health. Oxid Med Cell. Longevity. 2017. https://doi.org/10.1155/2017/8416763

  17. Al-Gubory KH, Garrel C, Faure P, Sugino N. Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress. Reproduct Biomed Online. 2012;25(6):551–60. https://doi.org/10.1016/j.rbmo.2012.08.004.

    Article  CAS  Google Scholar 

  18. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59(3):527–605. https://doi.org/10.1152/physrev.1979.59.3.527.

    Article  CAS  PubMed  Google Scholar 

  19. Konno T, Melo EP, Chambers JE, Avezov E. Intracellular sources of ROS/H2O2 in health and neurodegeneration: spotlight on endoplasmic reticulum. Cells. 2021;10(2):233. https://doi.org/10.3390/cells10020233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilson LR, Panda S, Schmidt AC, Sombers LA. Selective and mechanically robust sensors for electrochemical measurements of real-time hydrogen peroxide dynamics in vivo. Anal Chem. 2018;90(1):888–95. https://doi.org/10.1021/acs.analchem.7b03770.

    Article  CAS  PubMed  Google Scholar 

  21. Purcell EK, Becker MF, Guo Y, Hara SA, Ludwig KA, McKinney CJ, Monroe EM, Rechenberg R, Rusinek CA, Saxena A, Siegenthaler JR. Next-generation diamond electrodes for neurochemical sensing: challenges and opportunities. Micromachines. 2021;12(2):128. https://doi.org/10.3390/mi12020128.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Roberts JG, Hamilton KL, Sombers LA. Comparison of electrode materials for the detection of rapid hydrogen peroxide fluctuations using background-subtracted fast scan cyclic voltammetry. Analyst. 2011;136(17):3550–6. https://doi.org/10.1039/C1AN15337D.

    Article  CAS  PubMed  Google Scholar 

  23. Sanford AL, Morton SW, Whitehouse KL, Oara HM, Lugo-Morales LZ, Roberts JG, Sombers LA. Voltammetric detection of hydrogen peroxide at carbon fiber microelectrodes. Anal Chem. 2010;15;82(12):5205–10. https://doi.org/10.1021/ac100536s.

    Article  CAS  Google Scholar 

  24. Roberts JG, Voinov MA, Schmidt AC, Smirnova TI, Sombers LA. The hydroxyl radical is a critical intermediate in the voltammetric detection of hydrogen peroxide. J Am Chem Soc. 2016;138(8):2516–9. https://doi.org/10.1021/jacs.5b13376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ross AE, Venton BJ. Sawhorse waveform voltammetry for selective detection of adenosine, ATP, and hydrogen peroxide. Anal Chem. 2014;86(15):7486–93. https://doi.org/10.1021/ac501229c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang B, Wen X, Chiou PY, Maidment NT. Pt Nanoparticle-modified carbon fiber microelectrode for selective electrochemical sensing of hydrogen peroxide. Electroanalysis. 2019;31(9):1641–5. https://doi.org/10.1002/elan.201900362.

    Article  CAS  Google Scholar 

  27. Siao HW, Chen SM, Lin KC. Electrochemical study of PEDOT-PSS-MDB-modified electrode and its electrocatalytic sensing of hydrogen peroxide. J Solid State Electrochem. 2011;15:1121–8. https://doi.org/10.1007/s10008-010-1174-x.

    Article  CAS  Google Scholar 

  28. Arbault S, Pantano P, Jankowski JA, Vuillaume M, Amatore C. Monitoring an oxidative stress mechanism at a single human fibroblast. Anal Chem. 1995;67(19):3382–90.

    Article  CAS  PubMed  Google Scholar 

  29. Amatore C, Arbault S, Bouton C, Drapier JC, Ghandour H, Koh AC. Real-time amperometric analysis of reactive oxygen and nitrogen species released by single immunostimulated macrophages. Chem Bio Chem. 2008;9(9):1472–80. https://doi.org/10.1002/cbic.200700746.

    Article  CAS  PubMed  Google Scholar 

  30. Amatore C, Arbault S, Bouton C, Coffi K, Drapier JC, Ghandour H, Tong Y. Monitoring in real time with a microelectrode the release of reactive oxygen and nitrogen species by a single macrophage stimulated by its membrane mechanical depolarization. Chem Bio Chem. 2006;7(4):653–61. https://doi.org/10.1002/cbic.200500359.

    Article  CAS  PubMed  Google Scholar 

  31. Hu K, Li Y, Rotenberg SA, Amatore C, Mirkin MV. Electrochemical measurements of reactive oxygen and nitrogen species inside single phagolysosomes of living macrophages. J. Am. Chem. Soc. 2019;141(11):4564–8. https://doi.org/10.1021/jacs.9b01217.

    Article  CAS  PubMed  Google Scholar 

  32. Amatore C, Arbault S, Koh AC. Simultaneous detection of reactive oxygen and nitrogen species released by a single macrophage by triple potential-step chronoamperometry. Anal Chem. 2010;82(4):1411–9. https://doi.org/10.1021/ac902486x.

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Sella C, Lemaître F, Guille Collignon M, Thouin L, Amatore C. Highly sensitive platinum-black coated platinum electrodes for electrochemical detection of hydrogen peroxide and nitrite in microchannel. Electroanalysis. 2013;25(4):895–902. https://doi.org/10.1002/elan.201200456.

    Article  CAS  Google Scholar 

  34. Li Y, Hu K, Yu Y, Rotenberg SA, Amatore C, Mirkin MV. Direct electrochemical measurements of reactive oxygen and nitrogen species in nontransformed and metastatic human breast cells. J Am Chem Soc. 2017;139(37):13055–62. https://doi.org/10.1021/jacs.7b06476.

    Article  CAS  PubMed  Google Scholar 

  35. Rusinek CA, Guo Y, Rechenberg R, Becker MF, Purcell E, Verber M, McKinney C, Li W. All-diamond microfiber electrodes for neurochemical analysis. J Electrochem Soc. 2018;165(12):G3087–92. https://doi.org/10.1149/2.0141812jes.

    Article  CAS  Google Scholar 

  36. Cobb SJ, Ayres ZJ, Macpherson JV. Boron doped diamond: a designer electrode material for the twenty-first century. Annu Rev Anal Chem. 2018;11:463–84. https://doi.org/10.1146/annurev-anchem-061417-010107.

    Article  CAS  Google Scholar 

  37. Ivandini TA, Sato R, Makide Y, Fujishima A, Einaga Y. Pt-implanted boron-doped diamond electrodes for electrochemical oxidation of hydrogen peroxide. Chem Lett. 2004;33(10):1330–1. https://doi.org/10.1246/cl.2004.1330.

    Article  CAS  Google Scholar 

  38. Ivandini TA, Sato R, Makide Y, Fujishima A, Einaga Y. Pt-implanted boron-doped diamond electrodes and the application for electrochemical detection of hydrogen peroxide. Diamond Relat Mater. 2005;14(11-12):2133–8. https://doi.org/10.1016/j.diamond.2005.08.022.

    Article  CAS  Google Scholar 

  39. Rismetov B, Ivandini TA, Saepudin E, Einaga Y. Electrochemical detection of hydrogen peroxide at platinum-modified diamond electrodes for an application in melamine strip tests. Diamond Relat Mater. 2014;48:88–95. https://doi.org/10.1016/j.diamond.2014.07.003.

    Article  CAS  Google Scholar 

  40. Jiang L, Hu J, Foord JS. Electroanalysis of hydrogen peroxide at boron doped diamond electrode modified by silver nanoparticles and haemoglobin. Electrochim Acta. 2015;176:488–96. https://doi.org/10.1016/j.electacta.2015.07.013.

    Article  CAS  Google Scholar 

  41. Azevedo GC, Castro RH, Matos MA, Matos RC. Amperometric determination of hydrogen peroxide in whitening gels using boron-doped diamond electrode. Anal Sci. 2018;34(8):913–7.

    Article  CAS  PubMed  Google Scholar 

  42. Liu M, Zhao G, Qi Y. Rapid and sensitive amperometric determination of hydrogen peroxide with a biosensor based on a carboxyphenyl functionalised boron-doped diamond electrode. Int J Environ Anal Chem. 2012;92(5):534–47. https://doi.org/10.1080/03067310903582325.

    Article  CAS  Google Scholar 

  43. Cai X, Tanner EE, Lin C, Ngamchuea K, Foord JS, Compton RG. The mechanism of electrochemical reduction of hydrogen peroxide on silver nanoparticles. Phys Chem Chem Phys. 2018;20(3):1608–14. https://doi.org/10.1039/C7CP07492A.

    Article  CAS  PubMed  Google Scholar 

  44. Chen S, Yuan R, Chai Y, Hu F. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta. 2013;180:15–32. https://doi.org/10.1007/s00604-012-0904-4.

    Article  CAS  Google Scholar 

  45. Wulandari R, Ivandini TA, Irkham SE, Einaga Y. Modification of boron-doped diamond electrodes with platinum to increase the stability and sensitivity of haemoglobin-based acrylamide sensors. Sens Mater. 2019;31(1105-17) https://doi.org/10.18494/SAM.2019.2192.

  46. Gao F, Yang N, Nebel CE. Highly stable platinum nanoparticles on diamond. Electrochim Acta. 2013;112:493–9. https://doi.org/10.1016/j.electacta.2013.09.005.

    Article  CAS  Google Scholar 

  47. Gao F, Yang N, Smirnov W, Obloh H, Nebel CE. Size-controllable and homogeneous platinum nanoparticles on diamond using wet chemically assisted electrodeposition. Electrochim Acta. 2013;90:445–51. https://doi.org/10.1016/j.electacta.2012.12.050.

    Article  CAS  Google Scholar 

  48. Zhou P, Dai Z, Fang M, Huang X, Bao J, Gong J. Novel dendritic palladium nanostructure and its application in biosensing. J Phys Chem C. 2007;111(34):12609–16. https://doi.org/10.1021/jp072898l.

    Article  CAS  Google Scholar 

  49. Xu F, Sun Y, Zhang Y, Shi Y, Wen Z, Li Z. Graphene–Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochem. Commun. 2011;13(10):1131–4. https://doi.org/10.1016/j.elecom.2011.07.017.

    Article  CAS  Google Scholar 

  50. Chakraborty S, Raj CR. Pt nanoparticle-based highly sensitive platform for the enzyme-free amperometric sensing of H2O2. Biosens Bioelectron. 2009;24(11):3264–8. https://doi.org/10.1016/j.bios.2009.04.015.

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y, Wang D, Xu L, Hou H, You T. A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosens Bioelectron. 2011;26(11):4585–90. https://doi.org/10.1016/j.bios.2011.05.034.

    Article  CAS  PubMed  Google Scholar 

  52. Wang H, Wang H, Li T, Ma J, Li K, Zuo X. Silver nanoparticles selectively deposited on graphene-colloidal carbon sphere composites and their application for hydrogen peroxide sensing. Sens Actuators, B. 2017;239:1205–12. https://doi.org/10.1016/j.snb.2016.08.143.

    Article  CAS  Google Scholar 

  53. Miao Z, Zhang D, Chen Q. Non-enzymatic hydrogen peroxide sensors based on multi-wall carbon nanotube/Pt nanoparticle nanohybrids. Materials. 2014;7(4):2945–55. https://doi.org/10.3390/ma7042945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Han M, Liu S, Bao J, Dai Z. Pd nanoparticle assemblies—As the substitute of HRP, in their biosensing applications for H2O2 and glucose. Biosens Bioelectron. 2012;31(1):151–6. https://doi.org/10.1016/j.bios.2011.10.008.

    Article  CAS  PubMed  Google Scholar 

  55. Gutes A, Laboriante I, Carraro C, Maboudian R. Palladium nanostructures from galvanic displacement as hydrogen peroxide sensor. Sens Actuators, B. 2010;147(2):681–6. https://doi.org/10.1016/j.snb.2010.03.084.

    Article  CAS  Google Scholar 

  56. Johnston DA, Cardosi MF, Vaughan DH. The electrochemistry of hydrogen peroxide on evaporated gold/palladium composite electrodes. Manufacture and electrochemical characterization. Electroanal. 1995;7(6):520–6. https://doi.org/10.1002/elan.1140070603.

    Article  CAS  Google Scholar 

  57. Yu Y, Sun Q, Liu X, Wu H, Zhou T, Shi G. Size-controllable gold–platinum alloy nanoparticles on nine functionalized ionic-liquid surfaces and their application as electrocatalysts for hydrogen peroxide reduction. Chem Eur J. 2011;17(40):11314–23. https://doi.org/10.1002/chem.201100010.

    Article  CAS  PubMed  Google Scholar 

  58. Wang H, Bo X, Bai J, Wang L, Guo L. Electrochemical applications of platinum–palladium alloy nanoparticles/large mesoporous carbon. J Electroanal Chem. 2011;662(2):281–7. https://doi.org/10.1016/j.jelechem.2011.06.020.

    Article  CAS  Google Scholar 

  59. Liu A, Geng H, Xu C, Qiu H. A three-dimensional hierarchical nanoporous PdCu alloy for enhanced electrocatalysis and biosensing. Anal Chim Acta. 2011;703(2):172–8. https://doi.org/10.1016/j.aca.2011.07.039.

    Article  CAS  PubMed  Google Scholar 

  60. Xu C, Liu Y, Su F, Liu A, Qiu H. Nanoporous PtAg and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosensing. Biosens Bioelectron. 2011;27(1):160–6. https://doi.org/10.1016/j.bios.2011.06.036.

    Article  CAS  PubMed  Google Scholar 

  61. Qiang L, Vaddiraju S, Rusling JF, Papadimitrakopoulos F. Highly sensitive and reusable Pt-black microfluidic electrodes for long-term electrochemical sensing. Biosens Bioelectron. 2010;26(2):682–8. https://doi.org/10.1016/j.bios.2010.06.064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Niu X, Chen C, Zhao H, Chai Y, Lan M. Novel snowflake-like Pt–Pd bimetallic clusters on screen-printed gold nanofilm electrode for H2O2 and glucose sensing. Biosens Bioelectron. 2012;36(1):262–6. https://doi.org/10.1016/j.bios.2012.03.030.

    Article  CAS  PubMed  Google Scholar 

  63. Chen KJ, Lee CF, Rick J, Wang SH, Liu CC, Hwang BJ. Fabrication and application of amperometric glucose biosensor based on a novel PtPd bimetallic nanoparticle decorated multi-walled carbon nanotube catalyst. Biosens Bioelectron. 2012;33(1):75–81. https://doi.org/10.1016/j.bios.2011.12.020.

    Article  CAS  PubMed  Google Scholar 

  64. Kissinger P, Heineman WR. Laboratory techniques in electroanalytical chemistry, Second Edition Revised and Expanded. 2nd ed. New York: Marcel Dekker, Inc.; 2018.

    Google Scholar 

  65. Harris DC. Quantitative chemical analysis. 9th ed. New York: W. H. Freeman and Company; 2010.

    Google Scholar 

  66. Nicholson RS. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem. 1965;37(11):1351–5.

    Article  CAS  Google Scholar 

  67. Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, Narovlyansky M, Whitesides GM. Electrochemical sensing in paper-based microfluidic devices. Lab Chip. 2010;10(4):477–83. https://doi.org/10.1039/B917150A.

    Article  CAS  PubMed  Google Scholar 

  68. Bartlett PN, Pratt KF. A study of the kinetics of the reaction between ferrocene monocarboxylic acid and glucose oxidase using the rotating-disc electrode. J Electroanal Chem. 1995;397(1-2):53–60. https://doi.org/10.1016/0022-0728(95)04173-8.

    Article  Google Scholar 

  69. García-Miranda Ferrari A, Foster CW, Kelly PJ, Brownson DA, Banks CE. Determination of the electrochemical area of screen-printed electrochemical sensing platforms. Biosens. 2018;8(2):53. https://doi.org/10.3390/bios8020053.

    Article  CAS  Google Scholar 

  70. Jarošová R, De Sousa Bezerra PM, Munson C, Swain GM. Assessment of heterogeneous electron-transfer rate constants for soluble redox analytes at tetrahedral amorphous carbon, boron-doped diamond, and glassy carbon electrodes. Phys Status Solidi. 2016;213(8):2087–98. https://doi.org/10.1002/pssa.201600339.

    Article  CAS  Google Scholar 

  71. Zhang Y, Wilson GS. Electrochemical oxidation of H2O2 on Pt and Pt+ Ir electrodes in physiological buffer and its applicability to H2O2-based biosensors. J Electroanal Chem. 1993;345(1-2):253–71. https://doi.org/10.1016/0022-0728(93)80483-X.

    Article  CAS  Google Scholar 

  72. Hall SB, Khudaish EA, Hart AL. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism. Electrochim Acta. 1998;43(5-6):579–88. https://doi.org/10.1016/S0013-4686(97)00125-4.

    Article  CAS  Google Scholar 

  73. Hall SB, Khudaish EA, Hart AL. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: effect of potential. Electrochim Acta. 1998;43(14-15):2015–24. https://doi.org/10.1016/S0013-4686(97)10116-5.

    Article  CAS  Google Scholar 

  74. Hall SB, Khudaish EA, Hart AL. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part IV: phosphate buffer dependence. Electrochim Acta. 1999;44(25):4573–82. https://doi.org/10.1016/S0013-4686(99)00183-8.

    Article  CAS  Google Scholar 

  75. Li H, Zhao H, He H, Shi L, Cai X, Lan M. Pt-Pd bimetallic nanocoral modified carbon fiber microelectrode as a sensitive hydrogen peroxide sensor for cellular detection. Sens Actuators B. 2018;260:174–82. https://doi.org/10.1016/j.snb.2017.12.179.

    Article  CAS  Google Scholar 

  76. Szunerits S, Boukherroub R. Investigation of the electrocatalytic activity of boron-doped diamond electrodes modified with palladium or gold nanoparticles for oxygen reduction reaction in basic medium. CR Chim. 2008;11(9):1004–9. https://doi.org/10.1016/j.crci.2008.01.015.

    Article  CAS  Google Scholar 

  77. Zhou ZL, Kang TF, Zhang Y, Cheng SY. Electrochemical sensor for formaldehyde based on Pt–Pd nanoparticles and a Nafion-modified glassy carbon electrode. Microchim Acta. 2009;164:133–8. https://doi.org/10.1007/s00604-008-0046-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Greg M. Swain for helpful discussions. Dr. SuiChing Phung and Yingyu Cai are thanked for their experimental contributions. Lastly, the authors acknowledge Dr. Minghua Ren for assistance with SEM imaging.

Funding

This publication was made possible by a grant from the National Institute of General Medical Sciences (GM103440) from the National Institutes of Health. The authors also gratefully acknowledge the Nevada IDEA Network for Biomedical Research Excellence (NV INBRE) for support through the Undergraduate Research Opportunities Program (UROP). The authors acknowledge the University of Nevada, Las Vegas (UNLV), for start-up funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory A. Rusinek.

Ethics declarations

Ethics approval

No animal or human samples were used as part of this study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 9725 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, E.M., Cordero, P.A., Kazemeini, S. et al. Platinum and palladium nanoparticles on boron-doped diamond for the electrochemical detection of hydrogen peroxide: a comparison study. Anal Bioanal Chem 415, 5781–5795 (2023). https://doi.org/10.1007/s00216-023-04859-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04859-5

Keywords

Navigation