Skip to main content

Advertisement

Log in

Real-time assay of invertase activity using isoquinolinylboronic acid as turn-on fluorescent sensor

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Invertase is the key enzyme involved in several crucial biological processes by hydrolyzing sucrose for production of glucose and fructose. Invertase plays important roles in the fields of food, pharmacy, cosmetics, biofuels, and agriculture. Detection of invertase activity is urgently necessary for scientific research and industrial processes. Herein, a continuous fluorometric method was developed for real-time detection of invertase activity. 8-Isoquinolinylboronic acid responded to fructose by formation of a fluorescent complex in turn-on manner, and served as a fluorescent sensor to selectively recognize fructose in ternary enzymatic mixture containing sucrose and glucose. The limit of detection (LOD) for fructose was 0.07 mM. Progress curve for fructose production was established by directly and continuously monitoring the fluorescence for invertase reaction with sucrose as substrate. Initial velocity was obtained to characterize invertase activity. LOD for invertase assay was 0.10 U·mL−1. Km and υmax for invertase were determined as 7.70 mM and 0.86 mM·min−1, respectively. Copper ion was demonstrated to inhibit the invertase activity with IC50 of 33.61 mM. Applicability in high-throughput screening for inhibitor was demonstrated. The proposed method allows for real-time, simple, and rapidly monitoring the invertase activity. It has a broad range of potential applications for kinetics and screening inhibitor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kulshrestha S, Tyagi P, Sindhi V, Yadavilli KS. Invertase and its applications — a brief review. J Pharm Res. 2013;7(9):792–7.

    CAS  Google Scholar 

  2. Zhang L, Wu F, Wanqin Y, Xu Z, Gou XL, Xiong L, et al. Soil invertase and urease activities at different periods in subalpine forest gap in western Sichuan. Shengtai Xuebao/Acta Ecol Sin. 2015;35:3919–25.

    Google Scholar 

  3. Yuan L, Gao Y, Mei Y, Liu J, Kalkhajeh YK, Hu H, et al. Effects of continuous straw returning on bacterial community structure and enzyme activities in rape-rice soil aggregates. Sci Rep. 2023;13(1):2357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tan X, Song K, Lu X. Enzymatic activity assay for invertase in synechocystis cells. Bio Protoc. 2018;8(10): e2856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xie J, Cai K, Hu H-X, Jiang Y-L, Yang F, Hu P-F, et al. Structural analysis of the catalytic mechanism and substrate specificity of Anabaena alkaline invertase InvA reveals a novel glucosidase*. J Biol Chem. 2016;291(49):25667–77.

    Article  CAS  PubMed  Google Scholar 

  6. Resa P, Elvira L, Sierra C, Espinosa FMd. Ultrasonic velocity assay of extracellular invertase in living yeasts. Anal Biochem. 2009;384(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  7. Aa HT, ArnasonTerra G, editors. A simplified method for measuring secreted invertase activity in Saccharomyces cerevisiae. 2014.

  8. Exnowitz F, Meyer B, Hackl T. NMR for direct determination of Km and Vmax of enzyme reactions based on the Lambert W function-analysis of progress curves. Biochim Biophys Acta (BBA) - Proteins Proteom. 2012;1824(3):443–9.

    Article  CAS  Google Scholar 

  9. Ao H, Feng H, Huang X, Zhao M, Qian Z. A reversible fluorescence nanoswitch based on dynamic covalent B-O bonds using functional carbon quantum dots and its application for α-glucosidase activity monitoring. J Mater Chem C. 2017;5(11):2826–32.

    Article  CAS  Google Scholar 

  10. Lacina K, Skládal P, James TD. Boronic acids for sensing and other applications — a mini-review of papers published in 2013. Chem Cent J. 2014;8(1):60.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mulla HR, Agard NJ, Basu A. 3-Methoxycarbonyl-5-nitrophenyl boronic acid: high affinity diol recognition at neutral pH. Bioorg Med Chem Lett. 2004;14(1):25–7.

    Article  CAS  PubMed  Google Scholar 

  12. Kur K, Przybyt M, Miller E. Study of 3-amino phenylboronic acid interactions with selected sugars by optical methods. J Lumin. 2017;183:486–93.

    Article  CAS  Google Scholar 

  13. Li J, Nappi AJ. Analysis of monophenol oxidase activity using high pressure liquid chromatography with electrochemical detection. J Liq Chromatogr. 1991;14(11):2089–108.

    Article  CAS  Google Scholar 

  14. Rikita T, Egawa Y, Seki T. Fluorometric determination of inulin using 5-quinolineboronic acid and inulinase. Anal Biochem. 2012;426(1):24–6.

    Article  CAS  PubMed  Google Scholar 

  15. Yang W, Yan J, Springsteen G, Deeter S, Wang B. A novel type of fluorescent boronic acid that shows large fluorescence intensity changes upon binding with a carbohydrate in aqueous solution at physiological pH. Bioorg Med Chem Lett. 2003;13(6):1019–22.

    Article  CAS  PubMed  Google Scholar 

  16. Yang W, Lin L, Wang B. A new type of boronic acid fluorescent reporter compound for sugar recognition. Tetrahedron Lett. 2005;46(46):7981–4.

    Article  CAS  Google Scholar 

  17. Wu X, Li Z, Chen X-X, Fossey JS, James TD, Jiang Y-B. Selective sensing of saccharides using simple boronic acids and their aggregates. Chem Soc Rev. 2013;42(20):8032–48.

    Article  CAS  PubMed  Google Scholar 

  18. Ramsay WJ, Bayley H. Single-molecule determination of the isomers of d-glucose and d-fructose that bind to boronic acids. Angew Chem Int Ed Engl. 2018;57(11):2841–5.

    Article  CAS  PubMed  Google Scholar 

  19. Shen QJ, Jin WJ. Chemical and photophysical mechanism of fluorescence enhancement of 3-quinolineboronic acid upon change of pH and binding with carbohydrates. Luminescence. 2011;26(6):494–9.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng Y, Ni N, Yang W, Wang B. A new class of fluorescent boronic acids that have extraordinarily high affinities for diols in aqueous solution at physiological pH. Chemistry. 2010;16(45):13528–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ni N, Laughlin S, Wang Y, Feng Y, Zheng Y, Wang B. Probing the general time scale question of boronic acid binding with sugars in aqueous solution at physiological pH. Bioorg Med Chem. 2012;20(9):2957–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Geethanjali HS, Melavanki RM, Nagaraja D, Bhavya P, Kusanur RA. Binding of boronic acids with sugars in aqueous solution at physiological pH — estimation of association and dissociation constants using spectroscopic method. J Mol Liquids. 2017;227(1):37–43.

    Google Scholar 

  23. Weitner T, Friganović T, Šakić D. Inner filter effect correction for fluorescence measurements in microplates using variable vertical axis focus. Anal Chem. 2022;94(19):7107–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pontius K, Semenova D, Silina Y, Gernaey K, Junicke H. Automated electrochemical glucose biosensor platform as an efficient tool toward on-line fermentation monitoring: novel application approaches and insights. Front Bioeng Biotechnol. 2020;8:436.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fellner S, Hentze S, Taggeselle J, Kempin U, Rocktäschel J. Analytical and clinical validation of a BNP assay on the new point-of-care (POC) platform respons®IQ2014.

  26. Hassanvand Z, Jalali F. Simultaneous determination of l-DOPA, l-tyrosine and uric acid by cysteic acid-modified glassy carbon electrode. Mater Sci Eng C. 2019;98:496–502.

    Article  CAS  Google Scholar 

  27. Wolfenden R, Yuan Y. Rates of spontaneous cleavage of glucose, fructose, sucrose, and trehalose in water, and the catalytic proficiencies of invertase and trehalas. J Am Chem Soc. 2008;130(24):7548–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cuezzo de Ginés S, Maldonado MC, Font de Valdez G. Purification and characterization of invertase from Lactobacillus reuteri CRL 1100. Curr Microbiol. 2000;40(3):181–4.

    Article  PubMed  Google Scholar 

  29. Lincoln L, More S. Bacterial invertases: occurrence, production, biochemical characterization, and significance of transfructosylation. J Basic Microbiol. 2017;57(10):803–13.

    Article  CAS  PubMed  Google Scholar 

  30. Manoochehri H, Hosseini NF, Saidijam M, Taheri M, Rezaee H, Nouri F. A review on invertase: its potentials and applications. Biocatal Agric Biotechnol. 2020;25: 101599.

    Article  Google Scholar 

  31. Rasbold L, Heinen P, Silva J, Simão R, Kadowaki M, Maller A. Cunninghamella echinulata PA3S12MM invertase: biochemical characterization of a promiscuous enzyme. J Food Biochem. 2021;45(4): e13654.

    Article  CAS  PubMed  Google Scholar 

  32. Yuan Y, Deng Z, Zhang B, Li G, Zhang J, Liu R, et al. Quality evaluation and geographical classification of immature rape and acacia honeys in China. J Sci Food Agric. 2021;101(13):5446–56.

    Article  CAS  PubMed  Google Scholar 

  33. Shaaban M, Wu Y, Núñez-Delgado A, Kuzyakov Y, Peng Q-A, Lin S, et al. Enzyme activities and organic matter mineralization in response to application of gypsum, manure and rice straw in saline and sodic soils. Environ Res. 2023;224: 115393.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Central University Basic Research Fund of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5.05 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Han, M., Yang, Y. et al. Real-time assay of invertase activity using isoquinolinylboronic acid as turn-on fluorescent sensor. Anal Bioanal Chem 415, 5297–5309 (2023). https://doi.org/10.1007/s00216-023-04841-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04841-1

Keywords

Navigation