Skip to main content
Log in

Elucidation of the relationship between evodiamine-induced liver injury and CYP3A4-mediated metabolic activation by UPLC-MS/MS analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Evodiamine (EVD), which has been reported to cause liver damage, is the main constituent of Evodia rutaecarpa (Juss.) Benth and may be bioactivated into reactive metabolites mediated by cytochrome P450. However, the relationships between bioactivation and EVD-induced hepatotoxicity remain unknown. In this study, comprehensive hepatotoxicity evaluation was explored, which demonstrated that EVD caused hepatotoxicity in both time- and dose-dependent manners in mice. By application of UPLC-Q/TOF-MS/MS, two GSH conjugates (GM1 and GM2) derived from reactive metabolites of EVD were identified, in microsomal incubation systems exposed to EVD with glutathione (GSH) as trapping agents. CYP3A4 was proved to be the main metabolic enzyme. Correspondingly, the N-acetyl-L-cysteine conjugate derived from the degradation of GM2 was detected in the urine of mice after exposure to EVD. For the first time, the iminoquinone intermediate was found in EVD-pretreated rat bile by the high-resolution MS platform. Pretreatment with ketoconazole protected the animals from hepatotoxicity, decreased the protein expression of cleaved caspase-1 and -3, but increased the area under the serum-concentration-time curve of EVD in blood determined by UPLC-QQQ-MS/MS. Depletion of GSH by buthionine sulfoximine exacerbated EVD-induced hepatotoxicity. These results implicated that the CYP3A4-mediated metabolic activation was responsible for the observed hepatotoxicity induced by EVD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

ALT:

Alanine amino transaminase

AST:

Aspartate amino transaminase

AUC:

Area under the serum-concentration-time curve

BSO:

Buthionine sulfoximine

Caspases:

Cysteinyl aspartate specific proteinases

CLz/F:

Clearance rate

Cmax :

Maximum serum concentration

CON:

Control

DEX:

Dextromethorphan

DIOB:

Diosbulbin B

EC:

Elemental composition

EIs:

Electrophilic reactive metabolites

EPI:

Enhanced product ion

ESI:

Electrospray ionization

EVD:

Evodiamine

GSH:

Glutathione

H&E:

Hematoxylin and eosin

i.p.:

Intraperitoneal

KM:

Kunming mice

KTC:

Ketoconazole

LIM:

Limonin

LLOQ:

Lower limit of quantification

MLM:

Mice liver microsome

MS:

Mass

m/z :

Mass to charge ratio

NAC:

N-Acetyl-L-cysteine

NADPH:

Nicotinamide adenine dinucleotide phosphate

PBS:

Phosphate-buffered saline

ppm:

Parts per million

PVDF:

Polyvinylidene fluoride

QQQ:

Triple quadrupole

Q/TOF:

Quadrupole/time of flight

RLM:

Rat liver microsome

RUT:

Rutaecarpine

SD:

Sprague-Dawley

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

t1/2z:

Elimination half-life

Tmax :

Time required to reach maximum serum concentration

UPLC:

Ultra performance liquid chromatography

Vz/F:

Distribution of apparent solvent

References

  1. Commission CP. Chinese pharmacopoeia. 11th ed. and CMS, Press T, editors. China: Beijing 2020.

  2. Kim H, Park J, Kim J, Ko B. Effect of herbal Ephedra sinica and Evodia rutaecarpa on body composition and resting metabolic rate: a randomized, double-blind clinical trial in korean premenopausal women. J Acupunct Meridian Stud. 2008;1(2):128–38. https://doi.org/10.1016/S2005-2901(09)60033-9.

    Article  PubMed  Google Scholar 

  3. Teschke R, Zhang L, Long H, Schwarzenboeck A, Schmidt-Taenzer W, Genthner A, et al. Traditional chinese medicine and herbal hepatotoxicity: a tabular compilation of reported cases. Ann Hepatol. 2015;14(1):7–19. https://doi.org/10.1016/S1665-2681(19)30796-3.

    Article  CAS  PubMed  Google Scholar 

  4. Teschke R, Larrey D, Melchart D, Danan G. TRADITIONAL chinese medicine (tcm) and herbal hepatotoxicity: Rucam and the role of novel diagnostic biomarkers such as micrornas. Medicines. 2016;3(3):18–77. https://doi.org/10.3390/medicines3030018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cai X, Meng N, Yang B. An analysis for one case of intoxation by overtaking Evodia rutaecarpa (juss.)benth. J Beijing Univ Tradit Chin Med. 2006;3:171–2.

    Google Scholar 

  6. Huang W, Zhao Y, Sun R. Experimental comparison study on mice’s acute toxicity of different composition in Evodia fructus. Chin J Pharmaco. 2010;7(3):129–34. https://doi.org/10.3969/j.issn.1672-8629.2010.03.001.

    Article  CAS  Google Scholar 

  7. Li X, Wu X, Dou L, Yin L, Huang W, Sun R. Research of oxidative damage mechanism on hepatotoxicity caused by volatile oil from Evodia fructus in mice. Chin J Pharmaco. 2015;12(01):16–9. https://doi.org/10.19803/j.1672-8629.2015.01.005.

    Article  Google Scholar 

  8. Zhang W, Wang M, Song H, Gao C, Wang D, Hua H, et al. Cyp3a4 inducer aggravates big flower Evodiae fructus-induced hepatotoxicity whereas limonin attenuates its hepatotoxicity. J Ethnopharmacol. 2021;264:113277. https://doi.org/10.1016/j.jep.2020.113277.

    Article  CAS  PubMed  Google Scholar 

  9. Ling Y, Hu P, Zhang L, Jin H, Chen J, Tao Z, et al. Identification and structural characterization of acylgluconic acids, flavonol glycosides, limonoids and alkaloids from the fruits of Evodia rutaecarpa by high performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry. J Chromatogr Sci. 2016;54(9):1593–604. https://doi.org/10.1093/chromsci/bmw109.

    Article  CAS  PubMed  Google Scholar 

  10. Liu S, Liu Z, Wei H, Yin Y, Zhang Q, Yan L, et al. Chemical compositions, yield variations and antimicrobial activities of essential oils from three species of Euodiae fructus in china. Ind Crops Prod. 2019;138:111481. https://doi.org/10.1016/j.indcrop.2019.111481.

    Article  CAS  Google Scholar 

  11. Li Y, Guo M, Li X, Yang X. Simultaneous qualitative and quantitative evaluation of the Coptidis Rhizoma and Euodiae fructus herbal pair by using uhplc-esi-qtof-ms and uhplc-dad. Molecules. 2020;25(20):4782. https://doi.org/10.3390/molecules25204782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sheu J. Pharmacological effects of rutaecarpine, an alkaloid isolated from Evodia rutaecarpa. Cardiovasc Drug Rev. 1999;17(3):237–45. https://doi.org/10.1111/j.1527-3466.1999.tb00017.x.

    Article  CAS  Google Scholar 

  13. Meng T, Fu S, He D, Hu G, Gao X, Zhang Y, et al. Evodiamine inhibits lipopolysaccharide (lps)-induced inflammation in bv-2 cells via regulating akt/nrf2-ho-1/nf-κb signaling axis. Cell Mol Neurobiol. 2021;41(1):115–27. https://doi.org/10.1007/s10571-020-00839-w.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H, Yin L, Lu M, Wang J, Li Y, Gao W, et al. Evodiamine attenuates adjuvant-induced arthritis in rats by inhibiting synovial inflammation and restoring the th17/treg balance. J Pharm Pharmacol. 2020;72(6):798–806. https://doi.org/10.1111/jphp.13238.

    Article  CAS  PubMed  Google Scholar 

  15. Hu Y, He K, Zhu H. Chinese herbal medicinal ingredients affect secretion of no, il-10, icam-1 and il-2 by endothelial cells. Immunopharmacol Immunotoxicol. 2015;37(3):324–8. https://doi.org/10.3109/08923973.2015.1046991.

    Article  CAS  PubMed  Google Scholar 

  16. Yu H, Jin H, Gong W, Wang Z, Liang H. Pharmacological actions of multi-target-directed evodiamine. Molecules. 2013;18(2):1826–43. https://doi.org/10.3390/molecules18021826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li C, Zeng Q, Chen M, Xu L, Zhang C, Mai F, et al. Evodiamine augments nlrp3 inflammasome activation and anti-bacterial responses through inducing α-tubulin acetylation. Front Pharmacol. 2019;10:290–306. https://doi.org/10.3389/fphar.2019.00290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cai Q, Wei J, Zha W, Shi S, Zhang Y, Wei R, et al. Toxicity of Evodiae fructus on rat liver mitochondria: the role of oxidative stress and mitochondrial permeability transition. Molecules. 2014;19(12):21168–82. https://doi.org/10.3390/molecules191221168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Labbe G, Pessayre D, Fromenty B. Drug-induced liver injury through mitochondrial dysfunction: mechanisms and detection during preclinical safety studies. Fundam Clin Pharmacol. 2010;22(4):335–53. https://doi.org/10.1111/j.1472-8206.2008.00608.x.

    Article  CAS  Google Scholar 

  20. Wen B, Roongta V, Liu L, Moore DJ. Metabolic activation of the indoloquinazoline alkaloids evodiamine and rutaecarpine by human liver microsomes: dehydrogenation and inactivation of cytochrome p450 3a4. Drug Metab Disposition. 2014;42(6):1044–54. https://doi.org/10.1124/dmd.114.057414.

    Article  CAS  Google Scholar 

  21. Pessayre D, Mansouri A, Berson A, Fromenty B. 2010 Mitochondrial involvement in drug-induced liver injury. In: Uetrecht J, editor. Adverse drug reactions. 196. Berlin, Heidelberg: Springer Berlin Heidelberg, p. 311-65.

  22. Zhang Z, Fang T, Zhou H, Yuan J, Liu Q 2018 Characterization of the in vitro metabolic profile of evodiamine in human liver microsomes and hepatocytes by uhplc-q exactive mass spectrometer. Front Pharmacol. 9. https://doi.org/10.3389/fphar.2018.00130.

  23. Sun H, Fang Z, Cao Y, Sun X, Hong M. Investigation of the in vitro metabolism of evodiamine: characterization of metabolites and involved cytochrome p450 isoforms. Phytother Res. 2013;27(5):705–12. https://doi.org/10.1002/ptr.4766.

    Article  CAS  PubMed  Google Scholar 

  24. Nikolin B, Imamović B, Medanhodžić-Vuk S, Sober M. High performance liquid chromatography in pharmaceutical analyses. Biomol Biomed. 2004;4(2):5–9. https://doi.org/10.17305/bjbms.2004.3405.

    Article  Google Scholar 

  25. Stettin D, Poulin RX, Pohnert G. Metabolomics benefits from orbitrap gc–ms—comparison of low- and high-resolution gc–ms. Metabolites [Internet]. 2020;10(4):143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu L, Zhu L, Gong K, Zhi X, Guan Y, Cai W. Identification of the constituents of percutaneous absorption from Duhaldea nervosa based on uhplc-q-exactive orbitrap ms and microdialysis technique. Int J Anal Chem. 2019;2019:8328942. https://doi.org/10.1155/2019/8328942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu J, Leung EL, Zhou H, Liu L, Li N. Metabolite analysis of toosendanin by an ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry technique. Molecules. 2013;18(10):12144–53. https://doi.org/10.3390/molecules181012144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin D, Wang K, Guo X, Gao H, Peng Y, Zheng J. Lysine- and cysteine-based protein adductions derived from toxic metabolites of 8-epidiosbulbin e acetate. Toxicol Lett. 2016;264:20–8. https://doi.org/10.1016/j.toxlet.2016.10.007.

    Article  CAS  PubMed  Google Scholar 

  29. Wang K, Zheng L, Peng Y, Song J-e, Zheng J. Selective and sensitive platform for function-based screening of potentially harmful furans. Anal Chem. 2014;86(21):10755–62. https://doi.org/10.1021/ac502796x.

    Article  CAS  PubMed  Google Scholar 

  30. Lu D, Peterson LA. Identification of furan metabolites derived from cysteine-cis-2-butene-1,4-dial-lysine cross-links. Chem Res Toxicol. 2010;23(1):142–51. https://doi.org/10.1021/tx9003215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gates LA, Lu D, Peterson LA. Trapping of cis-2-butene-1,4-dial to measure furan metabolism in human liver microsomes by cytochrome p450 enzymes. Drug Metab Dispos. 2012;40(3):596–601. https://doi.org/10.1124/dmd.111.043679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang K, Lin D, Guo X, Huang W, Zheng J, Peng Y. Chemical identity of interaction of protein with reactive metabolite of diosbulbin b in vitro and in vivo. Toxins. 2017;9(8):249–63. https://doi.org/10.3390/toxins9080249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chi M, Peng Y, Zheng J. Characterization of glutathione conjugates derived from reactive metabolites of bakuchiol. Chem Biol Interact. 2016;244:178–86. https://doi.org/10.1016/j.cbi.2015.12.009.

    Article  CAS  PubMed  Google Scholar 

  34. Shih J, Shih Y, Pai M, Hou Y, Yeh C, Yeh S. Fish oil-based fat emulsion reduces acute kidney injury and inflammatory response in antibiotic-treated polymicrobial septic mice. Nutrients. 2016;8(3):165. https://doi.org/10.3390/nu8030165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Al Shoyaib A, Archie SR, Karamyan VT. Intraperitoneal route of drug administration: should it be used in experimental animal studies? Pharm Res. 2019;37(1):12. https://doi.org/10.1007/s11095-019-2745-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang K, Li W, Chen J, Peng Y, Zheng J. Detection of cysteine- and lysine-based protein adductions by reactive metabolites of 2,5-dimethylfuran. Anal Chim Acta. 2015;896:93–101. https://doi.org/10.1016/j.aca.2015.09.017.

    Article  CAS  PubMed  Google Scholar 

  37. Wang K, Wang H, Peng Y, Zheng J. Identification of epoxide-derived metabolite(s) of benzbromarone. Drug Metab Disposition. 2016;44(4):607. https://doi.org/10.1124/dmd.115.066803.

    Article  Google Scholar 

  38. Wang H, Wang K, Mao X, Zhang Q, Yao T, Peng Y, et al. Mechanism-based inactivation of cyp2c9 by linderane. Xenobiotica. 2015;45(12):1037–46. https://doi.org/10.3109/00498254.2015.1041002.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Zhang D, Ge N, Zhu G, Hao C, Zhang Y, et al. Effect of evodiamine on cyp enzymes in rats by a cocktail method. Pharmacology. 2016;97(5–6):218–23. https://doi.org/10.1159/000443178.

    Article  CAS  PubMed  Google Scholar 

  40. Li W, Lin D, Gao H, Xu Y, Meng D, Smith CV, et al. Metabolic activation of furan moiety makes diosbulbin b hepatotoxic. Arch Toxicol. 2016;90(4):863–72. https://doi.org/10.1007/s00204-015-1495-8.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang W, Guo J, Wang D, Ren S, Hua H, Morikawa T, et al. Effect of cyp3a inducer/inhibitor on pharmacokinetics of five alkaloids in Evodiae fructus. Chem Biol Interact. 2020;327:109146. https://doi.org/10.1016/j.cbi.2020.109146.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao T, Fu Y, Sun H, Liu X. Ligustrazine suppresses neuron apoptosis via the bax/bcl-2 and caspase-3 pathway in pc12 cells and in rats with vascular dementia. IUBMB Life. 2018;70(1):60–70. https://doi.org/10.1002/iub.1704.

    Article  CAS  PubMed  Google Scholar 

  43. Yang F, Shi L, Liang T, Ji L, Zhang G, Shen Y, et al. Anti-tumor effect of evodiamine by inducing akt-mediated apoptosis in hepatocellular carcinoma. Biochem Biophys Res Commun. 2017;485(1):54–61. https://doi.org/10.1016/j.bbrc.2017.02.017.

    Article  CAS  PubMed  Google Scholar 

  44. Park B, Laverty H, Srivastava A, Antoine D, Naisbitt D, Williams D. Drug bioactivation and protein adduct formation in the pathogenesis of drug-induced toxicity. Chem Biol Interact. 2011;192(1–2):30–6. https://doi.org/10.1016/j.cbi.2010.09.011.

    Article  CAS  PubMed  Google Scholar 

  45. Sakatis MZ, Reese MJ, Harrell AW, Taylor MA, Baines IA, Chen L, et al. Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for> 200 compounds. Chem Res Toxicol. 2012;25(10):2067–82. https://doi.org/10.1021/tx300075j.

    Article  CAS  PubMed  Google Scholar 

  46. Lin G, Wang J, Li N, Li M, Gao H, Ji Y, et al. Hepatic sinusoidal obstruction syndrome associated with consumption of Gynura segetum. J Hepatol. 2011;54(4):666–73. https://doi.org/10.1016/j.jhep.2010.07.031.

    Article  PubMed  Google Scholar 

  47. Li C, Lin D, Gao H, Hua H, Peng Y, Zheng J. N-acetyl lysine/glutathione-derived pyrroles as potential ex vivo biomarkers of bioactivated furan-containing compounds. Chem Res Toxicol. 2015;28(3):384–93. https://doi.org/10.1021/tx500334m.

    Article  CAS  PubMed  Google Scholar 

  48. Gao W, Mizukawa Y, Nakatsu N, Minowa Y, Yamada H, Ohno Y, et al. Mechanism-based biomarker gene sets for glutathione depletion-related hepatotoxicity in rats. Toxicol Appl Pharmacol. 2010;247(3):211–21. https://doi.org/10.1016/j.taap.2010.06.015.

    Article  CAS  PubMed  Google Scholar 

  49. Davis D, Potter W, Jollow D, Mitchell J. Species differences in hepatic glutathione depletion, covalent binding and hepatic necrosis after acetaminophen. Life Sci. 1974;14:2099–109. https://doi.org/10.1016/0024-3205(74)90092-7.

    Article  CAS  PubMed  Google Scholar 

  50. Hoffmann KJ, Streeter AJ, Axworthy DB, Baillie TA. Identification of the major covalent adduct formed in vitro and in vivo between acetaminophen and mouse liver proteins. Mol Pharmacol. 1985;27(5):566–73. https://doi.org/10.1002/med.2610050405.

    Article  CAS  PubMed  Google Scholar 

  51. Wang H, Feng Y, Wang Q, Guo X, Huang W, Peng Y, et al. Cysteine-based protein adduction by epoxide-derived metabolite (s) of benzbromarone. Chem Res Toxicol. 2016;29(12):2145–52. https://doi.org/10.1021/acs.chemrestox.6b00275.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China (Grant No. 81803615), the Technology Major Project of China “Key New Drug Creation and Manufacturing Program” (Grant No. 2017ZX09301012-001), Tianjin Graduate Research Innovation Project (2022BKY178, 2022SKY224), and TUTCM Graduate Research Innovation Project (YJSKC-20221007, YJSKC-20221034).

Author information

Authors and Affiliations

Authors

Contributions

Ting Peng: investigation, methodology, data curation, software, writing — original draft. Jinqiu Rao: methodology, visualization, investigation. Tingting zhang: methodology, visualization, investigation. Yuan Wang: visualization, investigation. Na Li: visualization, investigation. Qing Gao: writing, review and editing; formal analysis; data curation. Xinchi Feng: writing — review and editing. Zhaohui Song: writing — review and editing. Kai Wang: project administration, formal analysis, funding acquisition, writing — original draft. Feng Qiu: formal analysis, visualization, funding acquisition, supervision, writing — review and editing. All data were generated in-house, and no paper mill was used. All authors agree to be accountable for all aspects of work ensuring integrity and accuracy.

Corresponding authors

Correspondence to Kai Wang or Feng Qiu.

Ethics declarations

Ethical approval

We declare that the study was performed according to the international, national, and institutional rules considering animal experiments, and biodiversity rights.

Source of biological material

Male SD rats were acquired from the Beijing Vital River Laboratory Animal Technology Co., Ltd. (Beijing, China, Certificate No. SCXK-2016-0011). Male Kunming (KM) mice were purchased from SPF (Beijing) Biotechnology Co., Ltd. (Beijing, China, Certificate No. SCXK-2019-0010).

Statement on animal welfare

The use of animals follows internationally accepted guidelines.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 340 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, T., Rao, J., Zhang, T. et al. Elucidation of the relationship between evodiamine-induced liver injury and CYP3A4-mediated metabolic activation by UPLC-MS/MS analysis. Anal Bioanal Chem 415, 5619–5635 (2023). https://doi.org/10.1007/s00216-023-04831-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04831-3

Keywords

Navigation