Skip to main content
Log in

A ZnIn2S4/Ag2CO3 Z-scheme heterostructure-based photoelectrochemical biosensor for neuron-specific enolase

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An efficient photo-to-electrical signal is pivotal to photoelectrochemical (PEC) biosensors. In our work, a novel PEC biosensor was fabricated for the detection of neuron-specific enolase (NSE) based on a ZnIn2S4/Ag2CO3 Z-scheme heterostructure. Due to the overlapping band potentials of the ZnIn2S4 and Ag2CO3, the formed Z-scheme heterostructure can promote the charge separation and photoelectric conversion efficiency. And the concomitant Ag nanoparticles in Ag2CO3 provided multiple functions to enhance the PEC response of the Z-scheme heterostructure. It acts not only as a bridge for the transfer of carriers between ZnIn2S4 and Ag2CO3, promoting the constructed Z-scheme heterostructure, but also as electron mediators to accelerate the transfer of photogenerated carriers and improve the capture of visible light of the Z-scheme heterostructure by surface plasmon resonance (SPR). Compared with single Ag2CO3 and ZnIn2S4, the photocurrent of the designed Z-scheme heterostructure increased more than 20 and 60 times respectively. The fabricated PEC biosensor based on a ZnIn2S4/Ag2CO3 Z-scheme heterostructure exhibits sensitive detection to NSE, and presents a linear range of 50 fg·mL−1 ~ 200 ng·mL−1 with a limit of detection of 4.86 fg·mL−1. The proposed PEC biosensor provides a potential approach for clinical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li H, Xiao Q, Lv J, Lei Q, Huang Y. Dopamine modified hyperbranched TiO2 arrays based ultrasensitive photoelectrochemical immunosensor for detecting neuron specific enolase. Anal Biochem. 2017;531:48–55. https://doi.org/10.1016/j.ab.2017.05.025.

    Article  CAS  PubMed  Google Scholar 

  2. Marangos PJ, Schmechel DE. Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci. 1987;10(1):269–95. https://doi.org/10.1146/annurev.ne.10.030187.001413.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang B, Tang Y, Wu X, Xie H, Zhao F, Zeng B. Experimental and DFT studies of novel Z-scheme Bi-doped Bi2WO6/Bi2S3 p-n/n homo/heterojunction and its application in cathodic photoelectrochemical immunosensing. Sens Actuators B Chem. 2021;346:130455. https://doi.org/10.1016/j.snb.2021.130455.

  4. Zhang Y, Liu D, Zhang Y, Qian Y, Li C, Qu Z, et al. Highly sensitive photoelectrochemical neuron specific enolase analysis based on cerium and silver Co-Doped Sb2WO6. Biosens Bioelectron. 2022;203:114047. https://doi.org/10.1016/j.bios.2022.114047.

  5. Medina-Hernández V, Ramos-Loyo J, Luquin S, Sánchez LFC, García-Estrada J, Navarro-Ruiz A. Increased lipid peroxidation and neuron specific enolase in treatment refractory schizophrenics. J Psychiatr Res. 2007;41(8):652–8. https://doi.org/10.1016/j.jpsychires.2006.02.010.

    Article  PubMed  Google Scholar 

  6. Li CS, Cheng BC, Ge W, Gao JF. Clinical value of CYFRA21-1, NSE, CA15-3, CA19-9 and CA125 assay in the elderly patients with pleural effusions. Int J Clin Pract. 2007;61(3):444–8. https://doi.org/10.1111/j.1742-1241.2006.01111.x.

    Article  CAS  PubMed  Google Scholar 

  7. Wu S, Liu L, Li G, Jing F, Mao H, Jin Q, et al. Multiplexed detection of lung cancer biomarkers based on quantum dots and microbeads. Talanta. 2016;156–157:48–54. https://doi.org/10.1016/j.talanta.2016.05.005.

    Article  CAS  PubMed  Google Scholar 

  8. Yu T, Cheng W, Li Q, Luo C, Yan L, Zhang D, et al. Electrochemical immunosensor for competitive detection of neuron specific enolase using functional carbon nanotubes and gold nanoprobe. Talanta. 2012;93:433–8. https://doi.org/10.1016/j.talanta.2012.02.047.

    Article  CAS  PubMed  Google Scholar 

  9. Qiu Z, Tang D. Nanostructure-based photoelectrochemical sensing platforms for biomedical applications. J Mater Chem B. 2020;8(13):2541–61. https://doi.org/10.1039/c9tb02844g.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao W-W, Xu J-J, Chen H-Y. Photoelectrochemical DNA biosensors. Chem Rev. 2014;114(15):7421–41. https://doi.org/10.1021/cr500100j.

    Article  CAS  PubMed  Google Scholar 

  11. Long Y-T, Kong C, Li D-W, Li Y, Chowdhury S, Tian H. Ultrasensitive determination of cysteine based on the photocurrent of Nafion-functionalized CdS–MV quantum dots on an ITO electrode. Small. 2011;7(12):1624–8. https://doi.org/10.1002/smll.201100427.

    Article  CAS  PubMed  Google Scholar 

  12. Yan P, Jiang D, Tian Y, Xu L, Qian J, Li H, et al. A sensitive signal-on photoelectrochemical sensor for tetracycline determination using visible-light-driven flower-like CN/BiOBr composites. Biosens Bioelectron. 2018;111:74–81. https://doi.org/10.1016/j.bios.2018.03.054.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu J-H, Feng Y-G, Wang A-J, Mei L-P, Luo X, Feng J-J. A signal-on photoelectrochemical aptasensor for chloramphenicol assay based on 3D self-supporting AgI/Ag/BiOI Z-scheme heterojunction arrays. Biosens Bioelectron. 2021;181:113158. https://doi.org/10.1016/j.bios.2021.113158.

  14. Pei F, Feng S, Zhang Y, Wu Y, Chen C, Sun Y, et al. A photoelectrochemical immunosensor based on Z-scheme CdS composite heterojunction for aflatoxin B1. Biosens Bioelectron. 2022;214:114500. https://doi.org/10.1016/j.bios.2022.114500.

  15. Chen X, Zhang W, Zhang L, Feng L, Zhang C, Jiang J, et al. Turning on the photoelectrochemical responses of Cd probe-deposited g-C3N4 nanosheets by nitrogen plasma treatment toward a selective sensor for H2S. ACS Appl Mater Interfaces. 2021;13(1):2052–61. https://doi.org/10.1021/acsami.0c19572.

    Article  CAS  PubMed  Google Scholar 

  16. Feng L, Zhang L, Chen X, Zhang C, Mao G, Wang H. A visible light-driven photoelectrochemical sensor for mercury (II) with “turn-on” signal output through in-situ formation of double type-II heterostructure using CdS nanowires and ZnS quantum dots. Chem Eng J. 2022;441:136073. https://doi.org/10.1016/j.cej.2022.136073.

  17. Wang H, Wang Y, Zhang Y, Wang Q, Ren X, Wu D, et al. Photoelectrochemical immunosensor for detection of carcinoembryonic antigen based on 2D TiO2 nanosheets and carboxylated graphitic carbon nitride. Sci Rep. 2016;6(1):27385. https://doi.org/10.1038/srep27385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang W, Wang X, Hao W, Wu Q, Peng J, Tu J, et al. 3D hollow-out TiO2 nanowire cluster/GOx as an ultrasensitive photoelectrochemical glucose biosensor. J Mater Chem B. 2020;8(11):2363–70. https://doi.org/10.1039/D0TB00082E.

    Article  CAS  PubMed  Google Scholar 

  19. Niu X, Zhao Y, Wang F, Wu J, Qu F, Tan W. Ultrasensitive photoelectrochemical biosensor based on novel Z-scheme heterojunctions of Zn-defective CdS/ZnS for microRNA assay. Anal Chem. 2021;93(51):17134–40. https://doi.org/10.1021/acs.analchem.1c04820.

    Article  CAS  PubMed  Google Scholar 

  20. Chen D, Zou X, Dong F, Zhen C, Xiao D, Wang X, et al. Donor–acceptor compensated ZnO semiconductor for photoelectrochemical biosensors. ACS Appl Mater Interfaces. 2021;13(28):33006–14. https://doi.org/10.1021/acsami.1c07499.

    Article  CAS  PubMed  Google Scholar 

  21. Wei Y-p, Liu X-P, Mao C-j, Niu H-L, Song J-M, Jin B-K. Highly sensitive electrochemical biosensor for streptavidin detection based on CdSe quantum dots. Biosens Bioelectron. 2018;103:99–103. https://doi.org/10.1016/j.bios.2017.12.024.

  22. Wang J, Sun S, Zhou R, Li Y, He Z, Ding H, et al. A review: synthesis, modification and photocatalytic applications of ZnIn2S4. J Mater Sci Technol. 2021;78:1–19. https://doi.org/10.1016/j.jmst.2020.09.045.

    Article  CAS  Google Scholar 

  23. Hu J, Chen C, Zheng Y, Zhang G, Guo C, Li CM. Spatially separating redox centers on Z-scheme ZnIn2S4/BiVO4 hierarchical heterostructure for highly efficient photocatalytic hydrogen evolution. Small. 2020;16(37):2002988. https://doi.org/10.1002/smll.202002988.

    Article  CAS  Google Scholar 

  24. Zhu Y, Wang L, Liu Y, Shao L, Xia X. In-situ hydrogenation engineering of ZnIn2S4 for promoted visible-light water splitting. Appl Catal B Environ. 2019;241:483–90. https://doi.org/10.1016/j.apcatb.2018.09.062.

    Article  CAS  Google Scholar 

  25. Yuan Y-J, Chen D, Zhong J, Yang L-X, Wang J, Liu M-J, et al. Interface engineering of a noble-metal-free 2D–2D MoS2/Cu-ZnIn2S4 photocatalyst for enhanced photocatalytic H2 production. J Mater Chem A. 2017;5(30):15771–9. https://doi.org/10.1039/C7TA04410K.

    Article  CAS  Google Scholar 

  26. Liu Q, Wu F, Cao F, Chen L, Xie X, Wang W, et al. A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting. Nano Res. 2015;8(11):3524–34. https://doi.org/10.1007/s12274-015-0852-5.

    Article  CAS  Google Scholar 

  27. Wang B, Deng Z, Fu X, Li Z. MoS2/CQDs obtained by photoreduction for assembly of a ternary MoS2/CQDs/ZnIn2S4 nanocomposite for efficient photocatalytic hydrogen evolution under visible light. J Mater Chem A. 2018;6(40):19735–42. https://doi.org/10.1039/C8TA07797E.

    Article  CAS  Google Scholar 

  28. Xu L, Deng X, Li Z. Photocatalytic splitting of thiols to produce disulfides and hydrogen over PtS/ZnIn2S4 nanocomposites under visible light. Appl Catal B Environ. 2018;234:50–5. https://doi.org/10.1016/j.apcatb.2018.04.030.

    Article  CAS  Google Scholar 

  29. Yang W, Zhang L, Xie J, Zhang X, Liu Q, Yao T, et al. Enhanced photoexcited carrier separation in oxygen-doped ZnIn2S4 nanosheets for hydrogen evolution. Angew Chem Int Ed. 2016;55(23):6716–20. https://doi.org/10.1002/anie.201602543.

    Article  CAS  Google Scholar 

  30. Xi J, Wang H, Zhang B, Zhao F, Zeng B. Novel molecularly imprinted photoelectrochemical sensor for rutin based on Bi2S3/ZnIn2S4 heterojunction. Sens Actuators B Chem. 2020;320:128409. https://doi.org/10.1016/j.snb.2020.128409.

  31. Liu H, Xv J, Wang L, Qian Y, Fu H, Huang M, et al. Sensitivity enhanced and selectivity improved ethanol sensor based on ZnIn2S4 nanosheet-coated In2O3 nanosphere core-shell heterostructure. J Alloys Compd. 2022;898:163000. https://doi.org/10.1016/j.jallcom.2021.163000.

  32. Wang H, Ye H, Zhang B, Zhao F, Zeng B. Synthesis of ZnIn2S4/CdS heterostructure based on electrostatic interaction mechanism for indirect photoelectrochemical detection of dopamine. J Phys Chem C. 2018;122(35):20329–36. https://doi.org/10.1021/acs.jpcc.8b05287.

    Article  CAS  Google Scholar 

  33. Liu J, Chen G, Sun J. Ag2S-Modified ZnIn2S4 nanosheets for photocatalytic H2 generation. ACS Appl Nano Mater. 2020;3(11):11017–24. https://doi.org/10.1021/acsanm.0c02240.

    Article  CAS  Google Scholar 

  34. Peng B, Zhang Z, Tang L, Ouyang X, Zhu X, Chen L, et al. Self-powered photoelectrochemical aptasensor for oxytetracycline cathodic detection based on a dual Z-scheme WO3/g-C3N4/MnO2 photoanode. Anal Chem. 2021;93(26):9129–38. https://doi.org/10.1021/acs.analchem.1c00929.

    Article  CAS  PubMed  Google Scholar 

  35. Cao J-T, Lv J-L, Liao X-J, Ma S-H, Liu Y-M. Photogenerated hole-induced chemical-chemical redox cycling strategy on a direct Z-scheme Bi2S3/Bi2MoO6 heterostructure photoelectrode: toward an ultrasensitive photoelectrochemical immunoassay. Anal Chem. 2021;93(28):9920–6. https://doi.org/10.1021/acs.analchem.1c02175.

    Article  CAS  PubMed  Google Scholar 

  36. Kothe T, Plumeré N, Badura A, Nowaczyk MM, Guschin DA, Rögner M, et al. Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications. Angew Chem Int Ed. 2013;52(52):14233–6. https://doi.org/10.1002/anie.201303671.

    Article  CAS  Google Scholar 

  37. Liu D, Xu X, Shen X, Luo L, Li L, Yan X, et al. Construction of the direct Z-scheme CdTe/APTES-WO3 heterostructure by interface engineering for cathodic “signal-off” photoelectrochemical aptasensing of streptomycin at sub-nanomole level. Sens Actuators B Chem. 2020;305:127210. https://doi.org/10.1016/j.snb.2019.127210.

  38. Godad SP, Kamal S. Multifunctional Ag2CO3 microrods as SERS-active substrate for the detection and degradation of rhodamine B dye. Spectrochim Acta A Mol Biomol Spectrosc. 2021;263:120176. https://doi.org/10.1016/j.saa.2021.120176.

  39. Feng C, Li G, Ren P, Wang Y, Huang X, Li D. Effect of photo-corrosion of Ag2CO3 on visible light photocatalytic activity of two kinds of Ag2CO3/TiO2 prepared from different precursors. Appl Catal B Environ. 2014;158–159:224–32. https://doi.org/10.1016/j.apcatb.2014.04.020.

    Article  CAS  Google Scholar 

  40. Wu C. Synthesis of Ag2CO3/ZnO nanocomposite with visible light-driven photocatalytic activity. Mater Lett. 2014;136:262–4. https://doi.org/10.1016/j.matlet.2014.08.074.

    Article  CAS  Google Scholar 

  41. Xiang Z, Zhong J, Huang S, Li J, Chen J, Wang T, et al. Efficient charge separation of Ag2CO3/ZnO composites prepared by a facile precipitation approach and its dependence on loading content of Ag2CO3. Mater Sci Semicond Process. 2016;52:62–7. https://doi.org/10.1016/j.mssp.2016.06.001.

    Article  CAS  Google Scholar 

  42. Li Z, Wang X, Tian W, Meng A, Yang L. CoNi bimetal cocatalyst modifying a hierarchical ZnIn2S4 nanosheet-based microsphere noble-metal-free photocatalyst for efficient visible-light-driven photocatalytic hydrogen production. ACS Sustain Chem Eng. 2019;7(24):20190–201. https://doi.org/10.1021/acssuschemeng.9b06430.

    Article  CAS  Google Scholar 

  43. Li Y, Fang L, Jin R, Yang Y, Fang X, Xing Y, et al. Preparation and enhanced visible light photocatalytic activity of novel g-C3N4 nanosheets loaded with Ag2CO3 nanoparticles. Nanoscale. 2015;7(2):758–64. https://doi.org/10.1039/C4NR06565D.

    Article  CAS  PubMed  Google Scholar 

  44. Li X, Yu J, Jaroniec M. Hierarchical photocatalysts. Chem Soc Rev. 2016;45(9):2603–36. https://doi.org/10.1039/c5cs00838g.

    Article  CAS  PubMed  Google Scholar 

  45. Liu H, Zhang J, Ao D. Construction of heterostructured ZnIn2S4@NH2-MIL-125(Ti) nanocomposites for visible-light-driven H2 production. Appl Catal B Environ. 2018;221:433–42. https://doi.org/10.1016/j.apcatb.2017.09.043.

    Article  CAS  Google Scholar 

  46. Tan C-L, Qi M-Y, Tang Z-R, Xu Y-J. Cocatalyst decorated ZnIn2S4 composites for cooperative alcohol conversion and H2 evolution. Appl Catal B Environ. 2021;298:120541. https://doi.org/10.1016/j.apcatb.2021.120541.

  47. Zhu Y, Liang Q, Zhou M, Yao C, Xu S, Li Z. Triptycene-based polymer embedded in ZnIn2S4 to construct a hierarchical heterostructure for efficient photocatalytic hydrogen evolution. ACS Appl Energy Mater. 2021;4(11):13239–47. https://doi.org/10.1021/acsaem.1c02834.

    Article  CAS  Google Scholar 

  48. Xu H, Song Y, Song Y, Zhu J, Zhu T, Liu C, et al. Synthesis and characterization of g-C3N4/Ag2CO3 with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Adv. 2014;4(65). https://doi.org/10.1039/c4ra03443k.

  49. Yang S, Wang H, Yu H, Zhang S, Fang Y, Zhang S, et al. A facile fabrication of hierarchical Ag nanoparticles-decorated N-TiO2 with enhanced photocatalytic hydrogen production under solar light. Int J Hydrogen Energy. 2016;41(5):3446–55. https://doi.org/10.1016/j.ijhydene.2015.12.190.

    Article  CAS  Google Scholar 

  50. Zhang A, Zhang L, Chen X, Zhu Q, Liu Z, Xiang J. Photocatalytic oxidation removal of Hg0 using ternary Ag/AgI-Ag2CO3 hybrids in wet scrubbing process under fluorescent light. Appl Surf Sci. 2017;392:1107–16. https://doi.org/10.1016/j.apsusc.2016.09.116.

    Article  CAS  Google Scholar 

  51. Hu J, Xu H, Wang S, Jia W, Cao Y. In-situ solid-state synthesis and regulation of Ag2O/Ag2CO3 heterojunctions with promoted visible-light driven photocatalytic decomposition for organic pollutant. Sep Purif Technol. 2019;226:95–108. https://doi.org/10.1016/j.seppur.2019.05.080.

    Article  CAS  Google Scholar 

  52. Christopher P, Linic S. Shape- and size-specific chemistry of Ag nanostructures in catalytic ethylene epoxidation. ChemCatChem. 2010;2(1):78–83. https://doi.org/10.1002/cctc.200900231.

    Article  CAS  Google Scholar 

  53. Liu Y, Kong J, Yuan J, Zhao W, Zhu X, Sun C, et al. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation. Chem Eng J. 2018;331:242–54. https://doi.org/10.1016/j.cej.2017.08.114.

    Article  CAS  Google Scholar 

  54. Zhu M, Chen P, Liu M. Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano. 2011;5(6):4529–36. https://doi.org/10.1021/nn200088x.

    Article  CAS  PubMed  Google Scholar 

  55. Liang D, Luo J, Huang Y, Liang X, Zhou Z, Wang J, et al. Z‑Scheme cathodic photoelectrochemical sensors for detection of hydrogen sulfide based on AgCl-Ag coupled with porous carbon nitride. Appl Surf Sci. 2020;532:147424. https://doi.org/10.1016/j.apsusc.2020.147424.

  56. Yang C, Tan Q, Li Q, Zhou J, Fan J, Li B, et al. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: dual effects of urea. Appl Catal B Environ. 2020;268:118738. https://doi.org/10.1016/j.apcatb.2020.118738.

  57. Chao Y, Zhou P, Li N, Lai J, Yang Y, Zhang Y, et al. Ultrathin visible-light-driven mo incorporating In2O3-ZnIn2Se4 Z-scheme nanosheet photocatalysts. Adv Mater. 2019;31(5):1807226. https://doi.org/10.1002/adma.201807226.

    Article  CAS  Google Scholar 

  58. Huang Z-F, Song J, Wang X, Pan L, Li K, Zhang X, et al. Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy. 2017;40:308–16. https://doi.org/10.1016/j.nanoen.2017.08.032.

    Article  CAS  Google Scholar 

  59. Low J, Dai B, Tong T, Jiang C, Yu J. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv Mater. 2019;31(6):1802981. https://doi.org/10.1002/adma.201802981.

    Article  CAS  Google Scholar 

  60. Li Z, Hou J, Zhang B, Cao S, Wu Y, Gao Z, et al. Two-dimensional Janus heterostructures for superior Z-scheme photocatalytic water splitting. Nano Energy. 2019;59:537–44. https://doi.org/10.1016/j.nanoen.2019.03.004.

    Article  CAS  Google Scholar 

  61. Jiang C, Wang H, Wang Y, Ji H. All solid-state Z‑scheme CeO2/ZnIn2S4 hybrid for the photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution. Appl Catal B Environ. 2020;277:119235. https://doi.org/10.1016/j.apcatb.2020.119235.

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2022QB151, ZR2021MB048) and the National Natural Science Foundation of China (No. 22274062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueyuan Li or Yueyun Li.

Ethics declarations

Ethics approval

The human serum samples used in this study were obtained from Shandong University of Technology Hospital with the consent of the hospital and the relevant personnel. This investigation was approved by the Shandong University of Technology Hospital ethics committee and Shandong University of Technology Hospital.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 506 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, S., Dong, H. et al. A ZnIn2S4/Ag2CO3 Z-scheme heterostructure-based photoelectrochemical biosensor for neuron-specific enolase. Anal Bioanal Chem 415, 5551–5562 (2023). https://doi.org/10.1007/s00216-023-04830-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04830-4

Keywords

Navigation