Skip to main content

Advertisement

Log in

Characterization of the cellular lipid composition during SARS-CoV-2 infection

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Emerging and re-emerging zoonotic viral diseases continue to significantly impact public health. Of particular interest are enveloped viruses (e.g., SARS-CoV-2, the causative pathogen of COVID-19), which include emerging pathogens of highest concern. Enveloped viruses contain a viral envelope that encapsulates the genetic material and nucleocapsid, providing structural protection and functional bioactivity. The viral envelope is composed of a coordinated network of glycoproteins and lipids. The lipid composition of the envelope consists of lipids preferentially appropriated from host cell membranes. Subsequently, changes to the host cell lipid metabolism and an accounting of what lipids are changed during viral infection provide an opportunity to fingerprint the host cell’s response to the infecting virus. To address this issue, we comprehensively characterized the lipid composition of VeroE6-TMPRSS2 cells infected with SARS-CoV-2. Our approach involved using an innovative solid-phase extraction technique to efficiently extract cellular lipids combined with liquid chromatography coupled to high-resolution tandem mass spectrometry. We identified lipid changes in cells exposed to SARS-CoV-2, of which the ceramide to sphingomyelin ratio was most prominent. The identification of a lipid profile (i.e., lipid fingerprint) that is characteristic of cellular SARS-CoV-2 infection lays the foundation for targeting lipid metabolism pathways to further understand how enveloped viruses infect cells, identifying opportunities to aid antiviral and vaccine development.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

WHO:

World Health Organization

HIV:

Human immunodeficiency virus

HSV:

Herpes simplex virus

RSV:

Respiratory syncytial virus

VSV:

Vesicular stomatitis virus

LC HR-MS/MS:

Liquid chromatography, high-resolution tandem mass spectrometry

SPE:

Solid-phase extraction

HPLC:

High-pressure liquid chromatography

MTBE:

Tert-Butyl methyl ether

HRMS:

High-resolution mass spectrometry

Q-TOF:

Quadrupole time of flight

LLE:

Liquid-liquid extraction

PCA:

Principal component analysis

PLS-DSA:

Partial least squares discriminate analysis

CE:

Cholesterol esters

GP:

Glycerophospholipids

DG:

Diacylglycerol

TG:

Triacylglycerol

SP:

Sphingolipids

Cer:

Ceramide

SM:

Sphingomyelin

LPC:

Lysophosphocholine

LPE:

Lysophosphoethanolamine

PC:

Glycerophosphoscholine

ePC:

Ether glycerophosphocholine

PE :

Glycerophosphoethanolamine

PI:

Glycerophosphoinositol

PS:

Glycerophosphoserine

IVA:

Influenza A

VE6-TMPRSS2:

Vero E6 cells overexpressing TMPRSS2

ASM:

Acid sphingomyelinase

FDA:

Federal Drug Administration

FIASMAs:

Functional inhibitors of acid sphingomyelinase

PLA2 :

Phospholipase A2

cPLA2 :

Cytosolic PLA2

SEM:

Standard error of the mean

TIC:

Total ion chromatogram

EIC:

Extracted ion chromatogram

t R :

Retention time

FC:

Fold change

References

  1. Åsjö B, Kruse H. Zoonoses in the emergence of human viral diseases. Perspect Med Virol. 2006;16:15–41.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Johns Hopkins University and Medicine CRC. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) 2020 [Available from: https://coronavirus.jhu.edu/map.html. Accessed 22 March 2023.

  3. Sweileh WM. Global research trends of World Health Organization’s top eight emerging pathogens. Global Health. 2017;13(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vigant F, Santos NC, Lee B. Broad-spectrum antivirals against viral fusion. Nat Rev Microbiol. 2015;13(7):426–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chan RB, Tanner L, Wenk MR. Implications for lipids during replication of enveloped viruses. Chem Phys Lipid. 2010;163(6):449–59.

    Article  CAS  Google Scholar 

  6. Schmitt AP, Lamb RA. Influenza virus assembly and budding at the viral budozone. Adv Virus Res. 2005;64:383–416.

    Article  CAS  PubMed  Google Scholar 

  7. Harrison SC. Viral membrane fusion. Virology. 2015;479–480:498–507.

    Article  PubMed  Google Scholar 

  8. Lorizate M, Krausslich HG. Role of lipids in virus replication. Cold Spring Harb Perspect Biol. 2011;3(10): a004820.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gerl MJ, Sampaio JL, Urban S, Kalvodova L, Verbavatz JM, Binnington B, et al. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J Cell Biol. 2012;196(2):213–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ivanova PT, Myers DS, Milne SB, McClaren JL, Thomas PG, Brown HA. Lipid composition of viral envelope of three strains of influenza virus - not all viruses are created equal. ACS Infect Dis. 2015;1(9):399–452.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tran A, Monreal IA, Moskovets E, Aguilar HC, Jones JW. Rapid detection of viral envelope lipids using lithium adducts and AP-MALDI high-resolution mass spectrometry. J Am Soc Mass Spectrom. 2021;32(9):2322–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol. 2017;18(6):361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McMahon HT, Boucrot E. Membrane curvature at a glance. J Cell Sci. 2015;128(6):1065–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Glaser PE, Gross RW. Plasmenylethanolamine facilitates rapid membrane fusion: a stopped-flow kinetic investigation correlating the propensity of a major plasma membrane constituent to adopt an HII phase with its ability to promote membrane fusion. Biochemistry. 1994;33(19):5805–12.

    Article  CAS  PubMed  Google Scholar 

  15. Meher G, Chakraborty H. Membrane composition modulates fusion by altering membrane properties and fusion peptide structure. J Membr Biol. 2019;252(4–5):261–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schneider-Schaulies J, Schneider-Schaulies S. Sphingolipids in viral infection. Biol Chem. 2015;396(6–7):585–95.

    Article  CAS  PubMed  Google Scholar 

  17. Theken KN, Tang SY, Sengupta S, FitzGerald GA. The roles of lipids in SARS-CoV-2 viral replication and the host immune response. J Lipid Res. 2021;62: 100129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farley SE, Kyle JE, Leier HC, Bramer LM, Weinstein JB, Bates TA, et al. A global lipid map reveals host dependency factors conserved across SARS-CoV-2 variants. Nat Commun. 2022;13(1):3487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nardacci R, Colavita F, Castilletti C, Lapa D, Matusali G, Meschi S, et al. Evidences for lipid involvement in SARS-CoV-2 cytopathogenesis. Cell Death Dis. 2021;12(3):263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vitner EB, Avraham R, Politi B, Melamed S, Israely T. Elevation in sphingolipid upon SARS-CoV-2 infection: possible implications for COVID-19 pathology. Life Sci Alliance. 2022;5(1):e202101168.

  21. Matsuyama S, Nao N, Shirato K, Kawase M, Saito S, Takayama I, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci USA. 2020;117(13):7001–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bedford T, Greninger AL, Roychoudhury P, Starita LM, Famulare M, Huang ML, et al. Cryptic transmission of SARS-CoV-2 in Washington state. Science (New York, NY). 2020;370(6516):571–5.

    Article  CAS  Google Scholar 

  23. Balish AL, Katz JM, Klimov AI. Influenza: propagation, quantification, and storage. Curr Protoc Microbiol. 2013;29(1):15G.1.1-G.1.24.

    Article  Google Scholar 

  24. Apffel A, Zhao L, Sartain MJ. A novel solid phase extraction sample preparation method for lipidomic analysis of human plasma using liquid chromatography/mass spectrometry. Metabolites. 2021;11(5):294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49(W1):W388-w96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koelmel JP, Li X, Stow SM, Sartain MJ, Murali A, Kemperman R, et al. Lipid annotator: towards accurate annotation in non-targeted liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS) lipidomics using a rapid and user-friendly software. Metabolites. 2020;10(3):1–20.

    Article  Google Scholar 

  27. Zhang J, Pekosz A, Lamb RA. Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J Virol. 2000;74(10):4634–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chukkapalli V, Heaton NS, Randall G. Lipids at the interface of virus-host interactions. Curr Opin Microbiol. 2012;15(4):512–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Falanga A, Cantisani M, Pedone C, Galdiero S. Membrane fusion and fission: enveloped viruses. Protein Pept Lett. 2009;16(7):751–9.

    Article  CAS  PubMed  Google Scholar 

  30. Saud Z, Tyrrell VJ, Zaragkoulias A, Protty MB, Statkute E, Rubina A, et al. The SARS-CoV2 envelope differs from host cells, exposes procoagulant lipids, and is disrupted in vivo by oral rinses. J Lipid Res. 2022;63(6): 100208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Casari I, Manfredi M, Metharom P, Falasca M. Dissecting lipid metabolism alterations in SARS-CoV-2. Prog Lipid Res. 2021;82: 101092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao T, Wang C, Duan B, Yang P, Wu J, Zhang Q. Altered lipid profile in COVID-19 patients and metabolic reprogramming. Front Microbiol. 2022;13: 863802.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yamate M, Yamashita M, Goto T, Tsuji S, Li YG, Warachit J, et al. Establishment of Vero E6 cell clones persistently infected with severe acute respiratory syndrome coronavirus. Microbes Infect. 2005;7(15):1530–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reis A, Rudnitskaya A, Blackburn GJ, MohdFauzi N, Pitt AR, Spickett CM. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J Lipid Res. 2013;54(7):1812–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sostare J, Di Guida R, Kirwan J, Chalal K, Palmer E, Dunn WB, et al. Comparison of modified Matyash method to conventional solvent systems for polar metabolite and lipid extractions. Anal Chim Acta. 2018;1037:301–15.

    Article  CAS  PubMed  Google Scholar 

  36. Höring M, Stieglmeier C, Schnabel K, Hallmark T, Ekroos K, Burkhardt R, et al. Benchmarking one-phase lipid extractions for plasma lipidomics. Anal Chem. 2022;94(36):12292–6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Miller ME, Adhikary S, Kolokoltsov AA, Davey RA. Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection. J Virol. 2012;86(14):7473–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marchesini N, Hannun YA. Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol = Biochimie et biologie cellulaire. 2004;82(1):27–44.

    Article  CAS  PubMed  Google Scholar 

  39. Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science (New York, NY). 1996;274(5294):1855–9.

    Article  CAS  Google Scholar 

  40. Stancevic B, Kolesnick R. Ceramide-rich platforms in transmembrane signaling. FEBS Lett. 2010;584(9):1728–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hannun YA, Obeid LM. Many ceramides. J Biol Chem. 2011;286(32):27855–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carpinteiro A, Gripp B, Hoffmann M, Pöhlmann S, Hoertel N, Edwards MJ, et al. Inhibition of acid sphingomyelinase by ambroxol prevents SARS-CoV-2 entry into epithelial cells. J Biol Chem. 2021;296: 100701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carpinteiro A, Edwards MJ, Hoffmann M, Kochs G, Gripp B, Weigang S, et al. Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS-CoV-2 by epithelial cells. Cell Rep Med. 2020;1(8): 100142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Darquennes G, Le Corre P, Le Moine O, Loas G. Association between functional inhibitors of acid sphingomyelinase (FIASMAs) and reduced risk of death in COVID-19 patients: a retrospective cohort study. Pharmaceuticals (Basel, Switzerland). 2021;14(3).

  45. Hoertel N, Sánchez-Rico M, Gulbins E, Kornhuber J, Carpinteiro A, Lenze EJ, et al. Association between FIASMAs and reduced risk of intubation or death in individuals hospitalized for severe COVID-19: an observational multicenter study. Clin Pharmacol Ther. 2021;110(6):1498–511.

    Article  CAS  PubMed  Google Scholar 

  46. Seftel D, Boulware DR. Prospective cohort of fluvoxamine for early treatment of coronavirus disease 19. Open Forum Infect Dis. 2021;8(2):ofab050.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Müller C, Hardt M, Schwudke D, Neuman BW, Pleschka S, Ziebuhr J. Inhibition of cytosolic phospholipase A(2)α impairs an early step of coronavirus replication in cell culture. J Virol. 2018;92(4).

Download references

Acknowledgements

The authors acknowledge the University of Maryland School of Pharmacy Faculty Start-up funds (J.W.J.); Agilent Research Gift #4520 (J.W.J.); University of Maryland, Baltimore, Institute for Clinical & Translational Research (ICTR) and the National Center for Advancing Translational Sciences (NCATS) Clinical Translational Science Award (CTSA) grant number 1UL1TR003098 (J.W.J.); University of Maryland School of Pharmacy Mass Spectrometry Center (SOP1841-IQB2014) and Cornell University NIH/NIAID grants R01 IA109022 and R21 AI142377 (H.A.C.); Emergent Ventures at Mercatus Center, George Mason Univ. Fast Grant # 2103 (H.A.C.); and Cornell Seed grants (H.A.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jace W. Jones.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABC Highlights: authored by Rising Stars and Top Experts.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2506 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Megied, A.M., Monreal, I.A., Zhao, L. et al. Characterization of the cellular lipid composition during SARS-CoV-2 infection. Anal Bioanal Chem 415, 5269–5279 (2023). https://doi.org/10.1007/s00216-023-04825-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04825-1

Keywords

Navigation