Skip to main content

Advertisement

Log in

An improved evanescent fluorescence scanner suitable for high-resolution glycome mapping of formalin-fixed paraffin-embedded tissue sections

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lectin microarray (LMA) is a high-throughput platform that enables the rapid and sensitive analysis of N- and O-glycans attached to glycoproteins in biological samples, including formalin-fixed paraffin-embedded (FFPE) tissue sections. Here, we evaluated the sensitivity of the advanced scanner based on the evanescent-field fluorescence principle, which is equipped with a 1× infinity correction optical system and a high-end complementary metal-oxide semiconductor (CMOS) image sensor in digital binning mode. Using various glycoprotein samples, we estimated that the mGSR1200-CMOS scanner has at least fourfold higher sensitivity for the lower limit of linearity range than that of a previous charge-coupled device scanner (mGSR1200). A subsequent sensitivity test using HEK293T cell lysates demonstrated that cell glycomic profiling could be performed with only three cells, which has the potential for the glycomic profiling of cell subpopulations. Thus, we examined its application in tissue glycome mapping, as indicated in the online LM-GlycomeAtlas database. To achieve fine glycome mapping, we refined the laser microdissection-assisted LMA procedure to analyze FFPE tissue sections. In this protocol, it was sufficient to collect 0.1 mm2 of each of the tissue fragments from 5-μm-thick sections, which differentiated the glycomic profile between the glomerulus and renal tubules of a normal mouse kidney. In conclusion, the improved LMA enables high-resolution spatial analysis, which expands the possibilities of its application classifying cell subpopulations in clinical FFPE tissue specimens. This will be used in the discovery phase for the development of novel glyco-biomarkers and therapeutic targets, and to expand the range of target diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data presented in this study are available on reasonable request from the corresponding author.

References

  1. Gagneux P HT, Varki A. (2022) Biological functions of glycan. Essentials of Glycobiology 4th editon edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY). https://doi.org/10.1101/glycobiology.4e.7.

  2. Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol. 2019;15(6):346–66. https://doi.org/10.1038/s41581-019-0129-4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science. 2014;343(6166):1235681. https://doi.org/10.1126/science.1235681.

    Article  CAS  PubMed  Google Scholar 

  4. Biemans R, Micoli F, Romano MR (2020) 8 - Glycoconjugate vaccines, production and characterization. In: Rauter AP, Christensen BE, Somsák L, Kosma P, Adamo R (eds) Recent Trends in Carbohydrate Chemistry. Elsevier, pp 285-313. https://doi.org/10.1016/B978-0-12-820954-7.00008-6.

  5. Kuroda Y, Oda T, Shimomura O, Hashimoto S, Akashi Y, Miyazaki Y, Furuya K, Furuta T, Nakahashi H, Louphrasitthiphol P, Mathis BJ, Nakajima T, Tateno H. Lectin-based phototherapy targeting cell surface glycans for pancreatic cancer. Int J Cancer. 2023;152(7):1425–37. https://doi.org/10.1002/ijc.34362.

    Article  CAS  PubMed  Google Scholar 

  6. Hiono T, Nagai-Okatani C, Kuno A (2021) 4.07 - Application of Glycan-Related Microarrays. In: Barchi JJ (ed) Comprehensive Glycoscience (Second Edition). Elsevier, Oxford, pp 134-148. https://doi.org/10.1016/B978-0-12-819475-1.00059-6.

  7. Heindel DW, Aziz PV, Chen S, Marth JD, Mahal LK. Glycomic analysis reveals a conserved response to bacterial sepsis induced by different bacterial pathogens. ACS Infect Dis. 2020. https://doi.org/10.1021/acsinfecdis.2c00082.

    Article  Google Scholar 

  8. Liu X, Lei Z, Liu D, Wang Z. Development of a sandwiched microarray platform for studying the interactions of antibiotics with Staphylococcus aureus. Anal Chim Acta. 2016;917:93–100. https://doi.org/10.1016/j.aca.2016.02.038.

    Article  CAS  PubMed  Google Scholar 

  9. Hirabayashi J, Yamada M, Kuno A, Tateno H. Lectin microarrays: concept, principle and applications. Chem Soc Rev. 2013;42(10):4443–58. https://doi.org/10.1039/C3CS35419A.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao R, Qin W, Qin R, Han J, Li C, Wang Y, Xu C. Lectin array and glycogene expression analyses of ovarian cancer cell line A2780 and its cisplatin-resistant derivate cell line A2780-cp. Clin Proteom. 2017. https://doi.org/10.1186/s12014-017-9155-z.

    Article  Google Scholar 

  11. Saito S, Hiemori K, Kiyoi K, Tateno H. Glycome analysis of extracellular vesicles derived from human induced pluripotent stem cells using lectin microarray. Sci Rep. 2018;8(1):3997. https://doi.org/10.1038/s41598-018-22450-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matsuda A, Kuno A, Ishida H, Kawamoto T, Shoda J, Hirabayashi J. Development of an all-in-one technology for glycan profiling targeting formalin-embedded tissue sections. Biochem Biophys Res Commun. 2008;370(2):259–63. https://doi.org/10.1016/j.bbrc.2008.03.090.

    Article  CAS  PubMed  Google Scholar 

  13. Fry SA, Afrough B, Lomax-Browne HJ, Timms JF, Velentzis LS, Leathem AJ. Lectin microarray profiling of metastatic breast cancers. Glycobiology. 2011;21(8):1060–70. https://doi.org/10.1093/glycob/cwr045.

    Article  CAS  PubMed  Google Scholar 

  14. Agrawal P, Fontanals-Cirera B, Sokolova E, Jacob S, Vaiana CA, Argibay D, Davalos V, McDermott M, Nayak S, Darvishian F, Castillo M, Ueberheide B, Osman I, Fenyö D, Mahal LK, Hernando E. A systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cancer Cell. 2017;31(6):804-819.e807. https://doi.org/10.1016/j.ccell.2017.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsuda A, Kuno A, Kawamoto T, Matsuzaki H, Irimura T, Ikehara Y, Zen Y, Nakanuma Y, Yamamoto M, Ohkohchi N, Shoda J, Hirabayashi J, Narimatsu H. Wisteria floribunda agglutinin-positive mucin 1 is a sensitive biliary marker for human cholangiocarcinoma. Hepatology. 2010;52(1):174–82. https://doi.org/10.1002/hep.23654.

    Article  CAS  PubMed  Google Scholar 

  16. Bird-Lieberman EL, Neves AA, Lao-Sirieix P, O’Donovan M, Novelli M, Lovat LB, Eng WS, Mahal LK, Brindle KM, Fitzgerald RC. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nat Med. 2012;18(2):315–21. https://doi.org/10.1038/nm.2616.

    Article  CAS  PubMed  Google Scholar 

  17. Hinneburg H, Korać P, Schirmeister F, Gasparov S, Seeberger PH, Zoldoš V, Kolarich D. Unlocking cancer glycomes from histopathological formalin-fixed and paraffin-embedded (FFPE) tissue microdissections. Mol Cell Proteomics. 2017;16(4):524–36. https://doi.org/10.1074/mcp.M116.062414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zou X, Yoshida M, Nagai-Okatani C, Iwaki J, Matsuda A, Tan B, Hagiwara K, Sato T, Itakura Y, Noro E, Kaji H, Toyoda M, Zhang Y, Narimatsu H, Kuno A. A standardized method for lectin microarray-based tissue glycome mapping. Sci Rep. 2017;7:43560. https://doi.org/10.1038/srep43560.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nagai-Okatani C, Zou X, Matsuda A, Itakura Y, Toyoda M, Zhang Y, Kuno A. Tissue glycome mapping: lectin microarray-based differential glycomic analysis of formalin-fixed paraffin-embedded tissue sections. Methods Mol Biol. 2022;2460:161–80. https://doi.org/10.1007/978-1-0716-2148-6_10.

    Article  CAS  PubMed  Google Scholar 

  20. Nagai-Okatani C, Nishigori M, Sato T, Minamino N, Kaji H, Kuno A. Wisteria floribunda agglutinin staining for the quantitative assessment of cardiac fibrogenic activity in a mouse model of dilated cardiomyopathy. Lab Invest. 2019;99(11):1749–65. https://doi.org/10.1038/s41374-019-0279-9.

    Article  CAS  PubMed  Google Scholar 

  21. Nagai-Okatani C, Zou X, Fujita N, Sogabe I, Arakawa K, Nagai M, Angata K, Zhang Y, Aoki-Kinoshita KF, Kuno A. LM-GlycomeAtlas Ver. 2.0: an integrated visualization for lectin microarray-based mouse tissue glycome mapping data with lectin histochemistry. J Proteome Res. 2021;20(4):2069–75. https://doi.org/10.1021/acs.jproteome.0c00907.

    Article  CAS  PubMed  Google Scholar 

  22. Itakura Y, Hasegawa Y, Kikkawa Y, Murakami Y, Sugiura K, Nagai-Okatani C, Sasaki N, Umemura M, Takahashi Y, Kimura T, Kuno A, Ishiwata T, Toyoda M. Spatiotemporal changes of tissue glycans depending on localization in cardiac aging. Regen Ther. 2023;22:68–78. https://doi.org/10.1016/j.reth.2022.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hamilton G, Brown N, Oseroff V, Huey B, Segraves R, Sudar D, Kumler J, Albertson D, Pinkel D. A large field CCD system for quantitative imaging of microarrays. Nucleic Acids Res. 2006;34(8):e58. https://doi.org/10.1093/nar/gkl160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lewis SM, Asselin-Labat M-L, Nguyen Q, Berthelet J, Tan X, Wimmer VC, Merino D, Rogers KL, Naik SH. Spatial omics and multiplexed imaging to explore cancer biology. Nature Methods. 2021;18(9):997–1012. https://doi.org/10.1038/s41592-021-01203-6.

    Article  CAS  PubMed  Google Scholar 

  25. Friganović T, Tomašić A, Šeba T, Biruš I, Kerep R, Borko V, Šakić D, Gabričević M, Weitner T. Low-pressure chromatographic separation and UV/Vis spectrophotometric characterization of the native and desialylated human apo-transferrin. Heliyon. 2021;7(9):e08030. https://doi.org/10.1016/j.heliyon.2021.e08030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feeney S, Gerlach JQ, Slattery H, Kilcoyne M, Hickey RM, Joshi L. Food Sci Nutr. 2019;7(5):1564–72. https://doi.org/10.1002/fsn3.950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Atsushi Matsuda and Dr. Takanori Wagatsuma of Keio University, Dr. Yoko Itakura of the Tokyo Metropolitan Institute of Gerontology, and Dr. Takahiro Hiono and Ms. Hiroko Shimazaki of AIST for their valuable discussions and comments.

Funding

This study was funded by a project for utilizing glycans in the development of innovative drug discovery technologies (grant number JP20ae0101021h0005) from the Japan Agency for Medical Research and Development (AMED).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chiaki Nagai-Okatani or Atsushi Kuno.

Ethics declarations

Institutional review board statement

All animal experiments were performed in accordance with relevant guidelines and regulations. The animal study protocol was approved by the Institutional Animal Care and Use Committee at AIST (no. 2022-082; date of approval, 22/06/2022).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Recent Advances in Ultrasensitive Omics Techniques with guest editor Joseph Zaia.

Patcharaporn Boottanun and Chiaki Nagai-Okatani contributed equally to this work.

Shinjiro Yamane has retired from GlycoTechnica Ltd.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3.48 MB)

Supplementary file2 (XLSX 99 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boottanun, P., Nagai-Okatani, C., Nagai, M. et al. An improved evanescent fluorescence scanner suitable for high-resolution glycome mapping of formalin-fixed paraffin-embedded tissue sections. Anal Bioanal Chem 415, 6975–6984 (2023). https://doi.org/10.1007/s00216-023-04824-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04824-2

Keywords

Navigation