Skip to main content
Log in

A sample-preparation-free, point-of-care testing system for in situ detection of bovine mastitis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We present a highly integrated point-of-care testing (POCT) device capable of immediately and accurately screening bovine mastitis infection based on somatic cell counting (SCC). The system primarily consists of a homemade cell-counting chamber and a miniature fluorescent microscope. The cell-counting chamber is pre-embedded with acridine orange (AO) in advance, which is simple and practical. And then SCC is directly identified by microscopic imaging analysis to evaluate the bovine mastitis infection. Only 4 μL of raw bovine milk is required for a simple sample testing and accurate SCC. The entire assay process from sampling to result in presentation is completed quickly within 6 min, enabling instant “sample-in and answer-out.” Under laboratory conditions, we mixed bovine leukocyte suspension with whole milk and achieved a detection limit as low as 2.12 × 104 cells/mL on the system, which is capable of screening various types of clinical standards of bovine milk. The fitting degrees of the proposed POCT system with manual fluorescence microscopy were generally consistent (R2 > 0.99). As a proof of concept, four fresh milk samples were used in the test. The average accuracy of somatic cell counts was 98.0%, which was able to successfully differentiate diseased cows from healthy ones. The POCT system is user-friendly and low-cost, making it a potential tool for on-site diagnosis of bovine mastitis in resource-limited areas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adkins PRF, Middleton JR. Methods for diagnosing mastitis. Vet Clin North Am Food Anim Pract. 2018;34(3):479–91.

    Article  PubMed  Google Scholar 

  2. Ashraf A, Imran M. Diagnosis of bovine mastitis: from laboratory to farm. Trop Anim Health Prod. 2018;50(6):1193–202.

    Article  PubMed  Google Scholar 

  3. Gunasekera TS, Veal DA, Attfield PV. Potential for broad applications of flow cytometry and fluorescence techniques in microbiological and somatic cell analyses of milk. Int J Food Microbiol. 2003;85(3):269–79.

    Article  CAS  PubMed  Google Scholar 

  4. Widmer J, Descloux L, Brügger C, Jäger M-L, Berger T, Egger L. Direct labeling of milk cells without centrifugation for counting total and differential somatic cells using flow cytometry. J Dairy Sci. 2022;105(11):8705–17.

    Article  CAS  PubMed  Google Scholar 

  5. Becheva Z, Gabrovska K, Godjevargova T. Immunofluorescence microscope assay of neutrophils and somatic cells in bovine milk. Food Agric Immunol. 2017;28(6):1196–210.

    Article  CAS  Google Scholar 

  6. Becheva ZR, Gabrovska KI, Godjevargova TI. Comparison between direct and indirect immunofluorescence method for determination of somatic cell count. Chem Zvesti. 2018;72(8):1861–7.

    CAS  Google Scholar 

  7. Kasai S, Prasad A, Kumagai R, Takanohashi K. Scanning electrochemical microscopy-somatic cell count as a method for diagnosis of bovine mastitis. Biology (Basel). 2022;11(4):549.

  8. Zeng W, Fu H. Quantitative measurements of the somatic cell count of fat-free milk based on droplet microfluidics. J Mater Chem C Mater. 2020;8(39):13770–6.

    Article  CAS  Google Scholar 

  9. Nirala NR, Shtenberg G. Amplified fluorescence by ZnO nanoparticles vs. quantum dots for bovine mastitis acute phase response evaluation in milk. Nanomaterials (Basel). 2020;10(3):549.

  10. Kumar DN, Pinker N, Shtenberg G. Porous silicon Fabry-Pérot interferometer for N-acetyl-β-d-glucosaminidase biomarker monitoring. ACS Sens. 2020;5(7):1969–76.

    Article  CAS  PubMed  Google Scholar 

  11. Koop G, van Werven T, Roffel S, Hogeveen H, Nazmi K, Bikker FJ. Short communication: protease activity measurement in milk as a diagnostic test for clinical mastitis in dairy cows. J Dairy Sci. 2015;98(7):4613–8.

    Article  CAS  PubMed  Google Scholar 

  12. Addis MF, Tedde V, Puggioni GMG, Pisanu S, Casula A, Locatelli C, et al. Evaluation of milk cathelicidin for detection of bovine mastitis. J Dairy Sci. 2016;99(10):8250–8.

    Article  CAS  PubMed  Google Scholar 

  13. Silva EPE, Moraes EP, Anaya K, Silva YMO, Lopes HAP, Neto JCA, et al. Lactoperoxidase potential in diagnosing subclinical mastitis in cows via image processing. PLoS ONE. 2022;17(2): e0263714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thiruvengadam M, Venkidasamy B, Selvaraj D, Samynathan R, Subramanian U. Sensitive screen-printed electrodes with the colorimetric zone for simultaneous determination of mastitis and ketosis in bovine milk samples. J Photochem Photobiol B. 2020;203: 111746.

    Article  CAS  PubMed  Google Scholar 

  15. Polat B, Colak A, Cengiz M, Yanmaz LE, Oral H, Bastan A, et al. Sensitivity and specificity of infrared thermography in detection of subclinical mastitis in dairy cows. J Dairy Sci. 2010;93(8):3525–32.

    Article  CAS  PubMed  Google Scholar 

  16. Kamphuis C, Mollenhorst H, Heesterbeek JAP, Hogeveen H. Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction. J Dairy Sci. 2010;93(8):3616–27.

    Article  CAS  PubMed  Google Scholar 

  17. Steeneveld W, Vernooij JCM, Hogeveen H. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction. J Dairy Sci. 2015;98(6):3896–905.

    Article  CAS  PubMed  Google Scholar 

  18. Kandeel SA, Megahed AA, Constable PD. Evaluation of hand-held sodium, potassium, calcium, and electrical conductivity meters for diagnosing subclinical mastitis and intramammary infection in dairy cattle. J Vete Intern Med. 2019;33(5):2343–53.

    Article  Google Scholar 

  19. Lima RS, Danielski GC, Pires ACS. Mastitis detection and prediction of milk composition using gas sensor and electrical conductivity. Food Bioproc Tech. 2018;11(3):551–60.

    Article  CAS  Google Scholar 

  20. Phiphattanaphiphop C, Leksakul K, Nakkiew W, Phatthanakun R, Khamlor T. Fabrication of spectroscopic microfluidic chips for mastitis detection in raw milk. Sci Rep. 2023;13(1):6041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garcia-Cordero JL, Barrett LM, O’Kennedy R, Ricco AJ. Microfluidic sedimentation cytometer for milk quality and bovine mastitis monitoring. Biomed Microdevices. 2010;12(6):1051–9.

    Article  CAS  PubMed  Google Scholar 

  22. Gao F, Wang J, Ge Y, Lu S. A vision-based instrument for measuring milk somatic cell count. Meas Sci Technol. 2020;31(12): 125904.

    Article  CAS  Google Scholar 

  23. Kim B, Lee YJ, Park JG, Yoo D, Hahn YK, Choi S. A portable somatic cell counter based on a multi-functional counting chamber and a miniaturized fluorescence microscope. Talanta. 2017;170:238–43.

    Article  CAS  PubMed  Google Scholar 

  24. Tyagi A, Khaware N, Tripathi B, Jeet T, Balasubramanian P, Elangovan R. i-scope: a compact automated fluorescence microscope for cell counting applications in low resource settings. Methods Appl Fluoresc. 2022;10(4): 044011.

    Article  Google Scholar 

  25. Chengolova Z, Ivanov Y, Grigorova G. The relationship of bovine milk somatic cell count to neutrophil level in samples of cow’s milk assessed by an automatic cell counter. J Dairy Res. 2021;88(3):330–3.

    Article  CAS  PubMed  Google Scholar 

  26. Martins SAM, Martins VC, Cardoso FA, Germano J, Rodrigues M, Duarte C, et al. Biosensors for on-farm diagnosis of mastitis. Front Bioeng Biotechnol. 2019;7:186.

  27. Düven G, Çetin B, Kurtuldu H, Gündüz GT, Tavman Ş, Kışla D. A portable microfluidic platform for rapid determination of microbial load and somatic cell count in milk. Biomed Microdevices. 2019;21(3):49.

    Article  PubMed  Google Scholar 

  28. Moon JS, Koo HC, Joo YS, Jeon SH, Hur DS, Chung CI, et al. Application of a new portable microscopic somatic cell counter with disposable plastic chip for milk analysis. J Dairy Sci. 2007;90(5):2253–9.

    Article  CAS  PubMed  Google Scholar 

  29. Zeng Y, Jin K, Li J, Liu J, Li J, Li T, et al. A low cost and portable smartphone microscopic device for cell counting. Sens Actuators A Phys. 2018;274:57–63.

    Article  CAS  Google Scholar 

  30. Rabha D, Biswas S, Hatiboruah D, Das P, Rather MA, Mandal M, et al. An affordable, handheld multimodal microscopic system with onboard cell morphology and counting features on a mobile device. Analyst. 2022;147(12):2859–69.

    Article  CAS  PubMed  Google Scholar 

  31. Tran MV, Susumu K, Medintz IL, Algar WR. Supraparticle assemblies of magnetic nanoparticles and quantum dots for selective cell isolation and counting on a smartphone-based imaging platform. Anal Chem. 2019;91(18):11963–71.

    Article  CAS  PubMed  Google Scholar 

  32. Chen Y, Chen X, Li M, Fan P, Wang B, Zhao S, et al. A new analytical platform for potential point-of-care testing of circulating tumor cells. Biosens Bioelectron. 2021;171: 112718.

    Article  CAS  PubMed  Google Scholar 

  33. Wong C, Pawlowski ME, Tkaczyk TS. Simple ultraviolet microscope using off-the-shelf components for point-of-care diagnostics. PLoS ONE. 2019;14(4): e0214090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu C, Wei X, Men X, Zhang X, Yu Y-L, Xu Z-R, et al. Two-dimensional cytometry platform for single-particle/cell analysis with laser-induced fluorescence and ICP–MS. Anal Chem. 2021;93(23):8203–9.

    Article  CAS  PubMed  Google Scholar 

  35. Kim B, Kang D, Choi S. Handheld microflow cytometer based on a motorized smart pipette, a microfluidic cell concentrator, and a miniaturized fluorescence microscope. Sensors (Basel). 2019;19(12):2761.

  36. Lee Y, Kim B, Choi S. On-Chip Cell Staining and counting platform for the rapid detection of blood cells in cerebrospinal fluid. Sensors (Basel). 2018;18(4):1124.

  37. Li X, Deng Q, Liu H, Lei Y, Fan P, Wang B, et al. A smart preparation strategy for point-of-care cellular counting of trace volumes of human blood. Anal Bioanal Chem. 2019;411(13):2767–80.

    Article  CAS  PubMed  Google Scholar 

  38. Chen M, Ding Y, Ke Y, Zeng Y, Liu N, Zhong Y, et al. Anti-tumour activity of zinc ionophore pyrithione in human ovarian cancer cells through inhibition of proliferation and migration and promotion of lysosome-mitochondrial apoptosis. Artif Cells Nanomed Biotechnol. 2020;48(1):824–33.

    Article  CAS  PubMed  Google Scholar 

  39. Wang P, Hu X, Li Y, Liu Q, Zhu X. Automatic cell nuclei segmentation and classification of breast cancer histopathology images. Signal Process. 2016;122:1–13.

    Article  Google Scholar 

  40. Lu Q, Chu K, Dou H, Smith ZJ. A sample-preparation-free, automated, sample-to-answer system for cell counting in human body fluids. Anal Bioanal Chem. 2021;413(20):5025–35.

    Article  CAS  PubMed  Google Scholar 

  41. Amy JP, Roxanna JC, Karan AF, Timothy JM. Considerations for point-of-care diagnostics: evaluation of acridine orange staining and postprocessing methods for a three-part leukocyte differential test. J Biomed Opt. 2017;22(3): 035001.

    Article  Google Scholar 

  42. Talukder M, Ahmed HMM. Effect of somatic cell count on dairy products: a review. Asian J Med Biol Res. 2017;3(1):1–9.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB44000000) and the Science and Technology Research Program of Henan Province (232102311187).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya Li or Xiaonan Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3872 KB)

Supplementary file2 (MP4 16501 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Chen, B., Hu, Y. et al. A sample-preparation-free, point-of-care testing system for in situ detection of bovine mastitis. Anal Bioanal Chem 415, 5499–5509 (2023). https://doi.org/10.1007/s00216-023-04823-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04823-3

Keywords

Navigation