Skip to main content
Log in

Novel bionanomaterial based on Spirulina maxima algae and graphene oxide for lead microextraction and determination in water and infant beverages

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new hybrid bionanomaterial composed of graphene oxide (GO) and Spirulina maxima (SM) algae was synthesized and applied to develop a preconcentration method based on the dispersive micro-solid phase extraction (D-μ-SPE) technique for the determination of Pb in water and infant beverages. In this work, Pb(II) was extracted with 3 mg of the hybrid bionanomaterial (GO@SM) followed by a back-extraction step using 500 µL of 0.6 mol L−1 HCl. Then, a 1.5 × 10−3 mol L−1 dithizone solution was added to the sample containing the analyte to form a purplish red-colored complex for its detection by UV–Vis spectrophotometry at 553 nm. An extraction efficiency of 98% was obtained after optimization of experimental variables such as GO@SM mass, pH, sample volume, type, and time of agitation. A detection limit of 1 μg L−1 and a relative standard deviation of 3.5% (at 5 μg L−1 Pb(II), n = 10) were achieved. The calibration linear range was obtained between 3.3 and 95 µg L−1 Pb(II). The proposed method was successfully applied for the preconcentration and determination of Pb(II) in infant beverages. Finally, the greenness degree of the D-µ-SPE method was evaluated using the Analytical GREEnness calculator (AGREE), obtaining a score of 0.62.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AGREE:

Analytical GREEnness calculator

ATR-FTIR:

Fourier transform infrared spectroscopy with attenuated total reflectance

CRM:

Certified reference material

D-µ-SPE:

Dispersive micro-solid phase extraction

DTZ:

Dithizone

EF:

Enhancement factor

ETAAS:

Electrothermal atomic absorption spectrometry

FAO:

The Food and Agriculture Organization of the United Nations

GO:

Graphene oxide

ICP-MS:

Inductively coupled plasma mass spectrometry

LOD:

Limit of detection

RSD:

Relative standard deviation

SEM:

Scanning electron microscopy

SM:

Spirulina maxima

UV-Vis:

Ultraviolet-visible spectroscopy

WHO:

World Health Organization

References

  1. Rahman Z, Singh VP. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess. 2019;191(7):1–21. https://doi.org/10.1007/s10661-019-7528-7.

    Article  CAS  Google Scholar 

  2. Rubio C, Gutiérrez AJ, Izquierdo REM, Revert C, Lozano G, Hardisson A. El plomo como contaminante alimentario. Rev Toxicol. 2004;21(2–3):72–80.

    CAS  Google Scholar 

  3. World Health Organization (WHO). Guidelines for drinking-water quality. Switzerland: WHO Library Cataloguing-in-Publication Data (4th Ed); 2004. 631 p.

  4. Khan WA, Arain MB, Soylak M. Nanomaterials-based solid phase extraction and solid phase microextraction for heavy metals food toxicity. Food Chem Toxicol. 2020;145:111704. https://doi.org/10.1016/j.fct.2020.

    Article  CAS  PubMed  Google Scholar 

  5. Penner MH. Ultraviolet, visible, and fluorescence spectroscopy. Food Anal. 2017:89–106. https://doi.org/10.1007/978-3-319-45776-5_7.

  6. Yilmaz E, Soylak M. Type of new generation separation and preconcentration methods. New Generation Green Solvents for Separation and Preconcentration of Organic and Inorganic Species: Elsevier; 2020. p. 75–148. https://doi.org/10.1016/B978-0-12-818569-8.00003-6.

  7. Escudero LB, Quintas PY, Wuilloud RG, Dotto GL. Biosorption of metals and metalloids. In: Lichtfouse Ca, editor. Green Adsorbents for Pollutant Removal. 19: Springer Cham; 2018. p. 35–86. https://doi.org/10.1007/978-3-319-92162-4_2.

  8. Ozdemir S, Kilinc E, Celik KS, Okumus V, Soylak M. Simultaneous preconcentrations of Co2+, Cr6+, Hg2+ and Pb2+ ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES. Food Chem. 2017;215:447–53. https://doi.org/10.1016/j.foodchem.2016.07.055.

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Liu M, Zhang L, Zhang T, Yue T, Li Z, et al. Biomass reinforced graphene oxide solid/liquid phase membrane extraction for the measurement of Pb (II) in food samples. Food Chem. 2018;269:9–15. https://doi.org/10.1016/j.foodchem.2018.06.137.

    Article  CAS  PubMed  Google Scholar 

  10. Moallaei H, Bouchara J-P, Rad A, Singh P, Raizada P, Tran HN, et al. Application of Fusarium sp. immobilized on multi-walled carbon nanotubes for solid-phase extraction and trace analysis of heavy metal cations. Food Chem. 2020;322:126757. https://doi.org/10.1016/j.foodchem.2020.

    Article  CAS  PubMed  Google Scholar 

  11. Suo L, Zhao J, Dong X, Gao X, Li X, Xu J, et al. Functionalization of a SiO 2-coated magnetic graphene oxide composite with polyaniline–polypyrrole for magnetic solid phase extraction of ultra-trace Cr (III) and Pb (II) in water and food samples using a Box-Behnken design. New J Chem. 2019;43(30):12126–36. https://doi.org/10.1039/C9NJ02038A.

    Article  CAS  Google Scholar 

  12. Baytak S, Türker AR. The use of Agrobacterium tumefacients immobilized on Amberlite XAD-4 as a new biosorbent for the column preconcentration of iron (III), cobalt (II), manganese (II) and chromium (III). Talanta. 2005;65(4):938–45. https://doi.org/10.1016/j.talanta.2004.08.021.

    Article  CAS  PubMed  Google Scholar 

  13. Balaji S, Kalaivani T, Rajasekaran C, Shalini M, Siva R, Singh RK, et al. Arthrospira (Spirulina) species as bioadsorbents for lead, chromium, and cadmium: a comparative study. CLEAN–Soil, Air, Water. 2014;42(12):1790–7. https://doi.org/10.1002/clen.201300478.

    Article  CAS  Google Scholar 

  14. Escudero LB, Maniero MA, Agostini E, Smichowski P. Biological substrates: green alternatives in trace elemental preconcentration and speciation analysis. TrAC. 2016;80:531–46. https://doi.org/10.1016/j.trac.2016.04.002.

    Article  CAS  Google Scholar 

  15. Roto R, Mellisani B, Kuncaka A, Mudasir M, Suratman A. Colorimetric sensing of Pb2+ ion by using ag nanoparticles in the presence of dithizone. Chemosensors. 2019;7(3):28. https://doi.org/10.3390/chemosensors7030028.

    Article  CAS  Google Scholar 

  16. Sotolongo AC, Martinis EM, Wuilloud RG. An easily prepared graphene oxide–ionic liquid hybrid nanomaterial for micro-solid phase extraction and preconcentration of Hg in water samples. Anal Methods. 2018;10(3):338–46. https://doi.org/10.1039/C7AY02201H.

    Article  CAS  Google Scholar 

  17. Muniyalakshmi M, Sethuraman K, Silambarasan D. Synthesis and characterization of graphene oxide nanosheets. Mater Today: Proc. 2020;21:408–10. https://doi.org/10.1016/j.matpr.2019.06.375.

    Article  CAS  Google Scholar 

  18. Lebron YAR, Moreira VR, Santos LVS. Studies on dye biosorption enhancement by chemically modified Fucus vesiculosus, Spirulina maxima and Chlorella pyrenoidosa algae. J Clean Prod. 2019;240:118197. https://doi.org/10.1016/j.jclepro.2019.

    Article  CAS  Google Scholar 

  19. Zhang S, Wang H, Liu J, Bao C. Measuring the specific surface area of monolayer graphene oxide in water. Mater Lett. 2020;261:127098. https://doi.org/10.1016/j.matlet.2019.

    Article  CAS  Google Scholar 

  20. Sanchez C, Shea KJ, Kitagawa S. Recent progress in hybrid materials science. Chem Soc Rev. 2011;40(2):471–2. https://doi.org/10.3390/separations6040056.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Q, Xue C, Owens G, Chen Z. Preparation of bionanomaterial based on green reduced graphene immobilized Ochrobactrum sp. FJ1: optimization, characterization and its application. Sep Purif Technol. 2023:123144. https://doi.org/10.1016/j.seppur.2023.

  22. Wahid MH, Eroglu E, Chen X, Smith SM, Raston CL. Entrapment of Chlorella vulgaris cells within graphene oxide layers. RSC Adv. 2013;3(22):8180–3. https://doi.org/10.1039/c3ra40605a.

    Article  CAS  Google Scholar 

  23. Wahid MH, Eroglu E, Chen X, Smith SM, Raston CL. Functional multi-layer graphene–algae hybrid material formed using vortex fluidics. Green Chem. 2013;15(3):650–5. https://doi.org/10.1039/c2gc36892g.

    Article  CAS  Google Scholar 

  24. Muthoosamy K, Manickam S. State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives. Ultrason Sonochem. 2017;39:478–93. https://doi.org/10.1016/j.ultsonch.2017.05.019.

    Article  CAS  PubMed  Google Scholar 

  25. Romberg B, Müller H. Photometric screening-test for heavy metals under flow injection conditions using extractive determination with dithizone. Anal Chim Acta. 1997;353(2–3):165–72. https://doi.org/10.1016/S0003-2670(97)87774-4.

    Article  CAS  Google Scholar 

  26. Syahrir M, Wijaya M, Irmayani R, editors. The comparison of optimum conditions for lead (Pb) analysis method using DITHIZONE and EDTA complex in seaweeds (Eucheuma spinosum). J Phys Conf Ser. 2021;752:12059. https://iopscience.iop.org/article/10.1088/1742-6596/1752/1/012059.

  27. Maratta A, Vazquez S, Lopez A, Augusto M, Pacheco PH. Lead preconcentration by solid phase extraction using oxidized carbon xerogel and spectrophotometric determination with dithizone. Microchem J. 2016;128:166–71. https://doi.org/10.1016/j.microc.2016.04.017.

    Article  CAS  Google Scholar 

  28. Javaid A, Bajwa R, Shafique U, Anwar J. Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenerg. 2011;35(5):1675–82. https://doi.org/10.1016/j.biombioe.2010.12.035.

    Article  CAS  Google Scholar 

  29. Mousavi HZ, Aibaghi-Esfahani B, Arjmandi A. Solid phase extraction of lead (II) by sorption on grinded eucalyptus stem and determination with flame atomic absorption spectrometry. J Chin Chem Soc. 2009;56(5):974–80. https://doi.org/10.1002/jccs.200900142.

    Article  CAS  Google Scholar 

  30. Al-Dhabi NA, Arasu MV. Biosorption of hazardous waste from the municipal wastewater by marine algal biomass. Environ Res. 2022;204. https://doi.org/10.1016/j.jhazmat.2021.126336.

  31. Ahmad A, Bhat AH, Buang A. Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: kinetic and equilibrium modeling. J Clean Prod. 2018;171:1361–75. https://doi.org/10.1016/j.jclepro.2017.09.252.

    Article  CAS  Google Scholar 

  32. Ozdemir S, Kilinc E, Oner ET. Preconcentrations and determinations of copper, nickel and lead in baby food samples employing Coprinus silvaticus immobilized multi-walled carbon nanotube as solid phase sorbent. Food Chem. 2019;276:174–9. https://doi.org/10.1016/j.foodchem.2018.07.123.

    Article  CAS  PubMed  Google Scholar 

  33. Cui L, Wang Y, Gao L, Hu L, Yan L, Wei Q, et al. EDTA functionalized magnetic graphene oxide for removal of Pb (II), Hg (II) and Cu (II) in water treatment: adsorption mechanism and separation property. J Chem Eng. 2015;281:1–10. https://doi.org/10.1016/j.cej.2015.06.043.

    Article  CAS  Google Scholar 

  34. Arribas Jimeno S, Hernández Méndez J, Lucena Conde F, Burriel Martí, F. Química analítica cualitativa. Madrid, España: Paraninfo (Ed), S.A; 2002. 1072 p.

  35. Mohubedu RP, Diagboya PN, Abasi CY, Dikio ED, Mtunzi F. Magnetic valorization of biomass and biochar of a typical plant nuisance for toxic metals contaminated water treatment. J Clean Prod. 2019;209:1016–24. https://doi.org/10.1016/j.jclepro.2018.10.215.

    Article  CAS  Google Scholar 

  36. de Paiva EL, Morgano MA, Arisseto-Bragotto AP. Occurrence and determination of inorganic contaminants in baby food and infant formula. Curr Opin Food Sci. 2019;30:60–6. https://doi.org/10.1016/j.cofs.2019.05.006.

    Article  Google Scholar 

  37. Miller J, Miller JC. Statistics and chemometrics for analytical chemistry. England: Pearson Education Limited (5th Ed); 2005. 268 p.

  38. Pena-Pereira F, Wojnowski W, Tobiszewski M. AGREE—Analytical GREEnness metric approach and software. Anal Chem. 2020;92(14):10076–82. https://doi.org/10.1021/acs.analchem.0c01887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gardener H, Bowen J, Callan SP. Lead and cadmium contamination in a large sample of United States infant formulas and baby foods. Sci Total Environ. 2019;651:822–7. https://doi.org/10.1016/j.scitotenv.2018.09.026.

    Article  CAS  PubMed  Google Scholar 

  40. Barbosa VMP, Barbosa AF, Bettini J, Luccas PO, Figueiredo EC. Direct extraction of lead (II) from untreated human blood serum using restricted access carbon nanotubes and its determination by atomic absorption spectrometry. Talanta. 2016;147:478–84. https://doi.org/10.1016/j.talanta.2015.10.023.

    Article  CAS  PubMed  Google Scholar 

  41. Khan M, Yilmaz E, Soylak M. Vortex assisted magnetic solid phase extraction of lead (II) and cobalt (II) on silica coated magnetic multiwalled carbon nanotubes impregnated with 1-(2-pyridylazo)-2-naphthol. J Mol Liq. 2016;224:639–47. https://doi.org/10.1016/j.molliq.2016.10.023.

    Article  CAS  Google Scholar 

  42. Lotfi Z, Zavvar Mousavi H, Sajjadi SM. Nitrogen doped nano porous graphene as a sorbent for separation and preconcentration trace amounts of Pb, Cd and Cr by ultrasonic assisted in-syringe dispersive micro solid phase extraction. Appl Organomet Chem. 2018;32(3):e4162. https://doi.org/10.1002/aoc.4162.

    Article  CAS  Google Scholar 

  43. Chaikhan P, Udnan Y, Ampiah-Bonney RJ, Chaiyasith WC. Magnetic dispersive solid phase extraction using recycled-graphite for GO-Fe3O4-dithizone composite combined with FAAS for determination of lead in environmental samples. Anal Sci. 2021:1015–21. https://doi.org/10.2116/analsci.20P383.

  44. dos Santos PM, Tarley CRT, Corazza MZ. Dispersive solid-phase extraction using 3 mercaptopropyltrimethoxysilane functionalized magnetic MWCNT-based nanocomposite for selective and efficient preconcentration of Pb2+ with FAAS determination. J Braz Chem Soc. 2022;33:37–47. https://doi.org/10.21577/0103-5053.20210122.

    Article  CAS  Google Scholar 

  45. Lari A, Esmaeili N, Ghafari H. Ionic liquid functionlized on multiwall carbon nanotubes for nickel and lead determination in human serum and urine samples by micro solid-phase extraction. Anal Methods Environ Chem J. 2021;4(02):72–85. https://doi.org/10.24200/amecj.v4.i02.144.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIBAA 1208), Universidad Nacional de Cuyo (M015–T1: “Graphene oxide nanomaterials functionalized with amino acids for the adsorptive removal of toxic dyes from water and industrial effluents”), and Organization for the Prohibition of Chemical Weapons (OPCW Project: “Hybrid bio–nanomaterials: tools for the development of highly sensitive analytical methods applied to the determination of toxic elements in baby food”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia B. Escudero.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2556 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingrassia, E.B., Fiorentini, E.F., Wuilloud, R.G. et al. Novel bionanomaterial based on Spirulina maxima algae and graphene oxide for lead microextraction and determination in water and infant beverages. Anal Bioanal Chem 415, 5475–5486 (2023). https://doi.org/10.1007/s00216-023-04821-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04821-5

Keywords

Navigation