Skip to main content
Log in

Synthesis of Se single atoms on nitrogen-doped carbon as novel electrocatalyst for sensitive nonenzymatic sensing of hydrogen peroxide

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Single-atom catalysts received increasing attention due to their maximum atom utilization efficiency. However, metal-free single atoms have not been used to construct electrochemical sensing interfaces. In this work, we demonstrated the use of Se single atoms (SA) as electrocatalyst for sensitive electrochemical nonenzymatic detection of H2O2. Se SA was synthesized and anchored on nitrogen-doped carbon (Se SA/NC) via a high-temperature reduction strategy. The structural properties of Se SA/NC were characterized by transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical techniques. The results showed that Se atoms were uniformly distributed on the surface of the NC. The obtained SA catalyst exhibited excellent electrocatalytic activity toward H2O2 reduction, and can be used to detect H2O2 in a wide linear range from 0.04 mM to 11.1 mM with a low detection limit of 0.018 mM and high sensitivity of 403.9 µA mM−1 cm−2. Moreover, the sensor can be used for the quantification of H2O2 concentration in real disinfectant samples. This work is of great significance for expanding the application of nonmetallic single-atom catalysts in the field of electrochemical sensing.

Graphical abstract

Se single atoms (Se SA) as novel electrocatalyst were synthesized and anchored on nitrogen-doped carbon (NC) for sensitive electrochemical nonenzymatic detection of H2O2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jia NM, Huang BZ, Chen LN, Tan L, Yao SZ. A simple non-enzymatic hydrogen peroxide sensor using gold nanoparticles-graphene-chitosan modified electrode. Sens Actuat B. 2014;195:165.

    Article  CAS  Google Scholar 

  2. Gao Y, Zhang ZY, Zhang XF, Deng ZP, Huo LH, Gao S. CuMn2O4 spinel nanoflakes for amperometric detection of hydrogen peroxide. ACS Appl Nano Mater. 2021;4:6832.

    Article  CAS  Google Scholar 

  3. Liu HY, Weng LY, Yang C. A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells. Microchim Acta. 2017;184:1267.

    Article  CAS  Google Scholar 

  4. Dhara K, Mahapatra DR. Recent advances in electrochemical nonenzymatic hydrogen peroxide sensors based on nanomaterials: a review. J Mater Sci. 2019;54:12319.

    Article  CAS  Google Scholar 

  5. Chen AC, Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev. 2013;42:5425.

    Article  CAS  PubMed  Google Scholar 

  6. Hu Y, Hojamberdiev M, Geng DS. Recent advances in enzyme-free electrochemical hydrogen peroxide sensors based on carbon hybrid nanocomposites. J Mater Chem C. 2021;9:6970.

    Article  CAS  Google Scholar 

  7. Qian LT, Durairaj S, Prins S, Chen AC. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens Bioelectron. 2021;175: 112836.

    Article  CAS  PubMed  Google Scholar 

  8. Simsek M, Wongkaew N. Carbon nanomaterial hydrids via laser writing for high-performance non-enzymatic electrochemical sensors: a critical review. Anal Bioanal Chem. 2021;413:6079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shamkhalichenar H, Choi JW. Review-non-enzymatic hydrogen peroxide electrochemical sensors based on reduced graphene oxide. J Electrochem Soc. 2020;167: 037531.

    Article  CAS  Google Scholar 

  10. Duan ZH, Huang CL, Yang XX, Hu AL, Lu XY, Jiang Q. Preparation of SnS2/MWCNTs chemically modified electrode and its electrochemical detection of H2O2. Anal Bioanal Chem. 2020;412:4403.

    Article  CAS  PubMed  Google Scholar 

  11. Li ZZ, Xin YM, Wu WL, Fu BH, Zhang ZH. Topotactic conversion of copper(I) phosphide nanowires for sensitive electrochemical detection of H2O2 release from living cells. Anal Chem. 2016;88:7724.

    Article  CAS  PubMed  Google Scholar 

  12. Ahmad K, Mobin SM. Design and fabrication of cost-effective and sensitive non-enzymatic hydrogen peroxide sensor using Co-doped δ-MnO2 flowers as electrode modifier. Anal Bioanal Chem. 2021;413:789.

    Article  CAS  PubMed  Google Scholar 

  13. Wang TY, Zhu HC, Zhuo JQ, Zhu ZW, Papakonstantinou P, Lubarsky G, Lin J, Li MX. Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal Chem. 2013;85:10289.

    Article  CAS  PubMed  Google Scholar 

  14. Shao MH, Peles A, Shoemaker K. Electrocatalysis on platinum nanoparticles: particle size effect on xxygen reduction reaction activity. Nano Lett. 2011;11:3714.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng NC, Zhang L, Doyle-Davis K, Sun XL. Single-atom catalysts: from design to application. Electrochem Energy Rev. 2019;2:539.

    Article  Google Scholar 

  16. Zhang L, Doyle-Davis K, Sun XL. Pt-based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms. Energy Environ Sci. 2019;12:492.

    Article  CAS  Google Scholar 

  17. Song ZX, Zhu YN, Liu HS, Banis MN, Zhang L, Li JJ, Doyle-Davis K, Li RY, Sham TK, Yang LJ, Young A, Botton GA, Liu LM, Sun XL. Engineering the low coordinated Pt single atom to achieve the superior electrocatalytic performance toward oxygen reduction. Small. 2020;16:2003096.

    Article  CAS  Google Scholar 

  18. Zhang QQ, Guan JQ. Single-atom catalysts for electrocatalytic applications. Adv Funct Mater. 2020;30:2000768.

    Article  CAS  Google Scholar 

  19. Guo WX, Wang ZY, Wang XQ, Wu YE. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv Mater. 2021;33:2004287.

    Article  CAS  Google Scholar 

  20. Hou HF, Mao JJ, Han YH, Wu F, Zhang MN, Wang DS, Mao LQ, Li YD. Single-atom electrocatalysis: a new approach to in vivo electrochemical biosensing. Sci China Chem. 2019;62:1720.

    Article  CAS  Google Scholar 

  21. Ding SC, Lyu ZY, Fang LZ, Li T, Zhu WL, Li SQ, Li X, Li JC, Du D, Lin YH. Single-atomic site catalyst with heme enzymes-like active sites for electrochemical sensing of hydrogen peroxide. Small. 2021;17:2100664.

    Article  CAS  Google Scholar 

  22. Hu H, Wang JJ, Cui BF, Zheng XR, Lin JG, Deng YD, Han XP. Atomically dispersed selenium sites on nitrogen-doped carbon for efficient electrocatalytic oxygen reduction. Angew Chem Int Ed. 2022;61: e202114441.

    CAS  Google Scholar 

  23. Shen SQ, Sun YY, Sun H, Pang YP, Xia SX, Chen TQ, Zheng SY, Yuan T. Research progress in ZIF-8 derived single atomic catalysts for oxygen reduction reaction. Catalysts. 2022;12:525.

    Article  CAS  Google Scholar 

  24. Yang ZK, Chen BX, Chen WX, Qu YT, Zhou FY, Zhao CM, Xu Q, Zhang QH, Duan XZ, Wu YE. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat Commun. 2019;10:3734.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lien TL, Le Nguyen, KKA, Phan NTS. A zeolite imidazolate framework ZIF-8 catalyst for friedel-crafts acylation. Chin J Catal. 2012;33:688.

    Article  Google Scholar 

  26. Biswas S, Chen Y, Xie Y. Ultrasmall Au (0) inserted hollow PCN-222 MOF for the high-sensitive detection of estradiol. Anal Chem. 2020;92:4566.

    Article  CAS  PubMed  Google Scholar 

  27. Niu X, Lan M, Zhao H. Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal Chem. 2013;85:3561.

    Article  CAS  PubMed  Google Scholar 

  28. Chen XR, Gao J, Zhao GQ, Wu C. In situ growth of FeOOH nanoparticles on physically-exfoliated graphene nanosheets as high performance H2O2 electrochemical sensor. Sens Actuat B. 2020;313: 128038.

    Article  CAS  Google Scholar 

  29. Ye MF, Yang C, Sun Y, Wang JY, Wang DD, Zhao YJ, Zhu Z, Liu PC, Zhu JH, Li CS, Peng WX, Zhang N, Dong YP. ZnFe2O4/Graphitic carbon nitride nano/microcomposites for the enhanced electrochemical sensing of H2O2. ACS Appl Nano Mater. 2022;5:10922.

    Article  CAS  Google Scholar 

  30. Xie FY, Cao XQ, Qu FL, Asiri AM, Sun XP. Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sens Actuat B. 2018;255:1254.

    Article  CAS  Google Scholar 

  31. Wang HF, Chen WX, Chen QY, Liu N, Cheng HJ, Li T. Metal-organic framework (MOF)-Au@Pt nanoflowers composite material for electrochemical sensing of H2O2 in living cells. J Electroanal Chem. 2021;897: 115603.

    Article  CAS  Google Scholar 

  32. Rajaitha PM, Hajra S, Padhan AM, Panda S, Sahu M, Kim HJ. An electrochemical sensor based on multiferroic NdFeO3 particles modified electrode for the detection of H2O2. J Alloy Compd. 2022;915: 165402.

    Article  CAS  Google Scholar 

  33. Liu Y, Zhao P, Liang Y. Single-atom nanozymes Co-N-C as an electrochemical sensor for detection of bioactive molecules. Talanta. 2023;254: 124171.

    Article  CAS  PubMed  Google Scholar 

  34. Hui Y, Yang D, Wang W. A label-free electrochemical aptasensor based on a gold nanoparticle/carbon nanotube/meta-organic framework nanohybrid for ultrasensitive detection of streptomycin in milk samples. Food Chem. 2023;402: 134150.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (No. 21575002). Natural Science Foundation of Anhui Province (No. 2108085MB66).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Yongping Dong.

Ethics declarations

Conflict of interest

Wei Wang is Editor of Analytical and Bioanalytical Chemistry but was not involved in the peer review of this paper. The other authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, C., Wang, W. & Dong, Y. Synthesis of Se single atoms on nitrogen-doped carbon as novel electrocatalyst for sensitive nonenzymatic sensing of hydrogen peroxide. Anal Bioanal Chem 415, 5391–5401 (2023). https://doi.org/10.1007/s00216-023-04814-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04814-4

Keywords

Navigation